【Advanced Chapter】Image Denoising in MATLAB: Using BM3D Algorithm for Image Denoising

发布时间: 2024-09-15 03:13:54 阅读量: 30 订阅数: 51
ZIP

image_denoising_bm3d-master.zip_BM3D-denosing_bm3d 图像_image deno

# 2.1 Theoretical Foundation of the BM3D Algorithm The BM3D algorithm is built upon the concepts of image block matching and collaborative filtering. Its core idea is to decompose the image into overlapping blocks, perform matching and collaborative filtering on each block to remove noise. BM3D algorithm assumes that the noise is additive Gaussian white noise with a mean of 0 and variance of σ². During the block matching phase, the algorithm uses similarity measures (such as normalized cross-correlation) to find the best matching block for each block in the image. In the collaborative filtering phase, the algorithm groups the matched blocks and performs collaborative filtering on each group of blocks. Collaborative filtering involves transforming the blocks (e.g., wavelet transform) and then filtering in the transform domain to remove the noise. # 2. The Principle of the BM3D Image Denoising Algorithm ### 2.1 Theoretical Foundation of the BM3D Algorithm BM3D (Block-Matching and 3D Transform) algorithm is an image denoising algorithm based on collaborative filtering. It removes noise from the image by dividing the image into small blocks and then performing collaborative filtering on these blocks in the three-dimensional transform domain (spatial domain and transform domain). The theoretical foundation of the BM3D algorithm is based on the following assumptions: - The noise in the image is usually additive noise, meaning that the noise is independent of the original image signal. - Similar blocks in the image have similar noise distributions. - In the three-dimensional transform domain, similar blocks have sparse representations, meaning that their majority of energy is concentrated in a few transform coefficients. ### 2.2 Steps and Process of the BM3D Algorithm The BM3D algorithm mainly includes the following steps: 1. **Image Block Division:** Divide the image into overlapping blocks of size 8×8. 2. **Collaborative Filtering:** For each block, find a set of blocks most similar to it in the three-dimensional transform domain (called collaborative blocks). 3. **Three-Dimensional Transform:** Perform three-dimensional transforms (usually wavelet transforms) on each collaborative block. 4. **Collaborative Domain Hard Thresholding:** In the three-dimensional transform domain, apply hard thresholding to the transform coefficients of each collaborative block to remove noise. 5. **Inverse Three-Dimensional Transform:** Perform inverse three-dimensional transforms on the thresholded collaborative blocks to obtain the denoised blocks. 6. **Block Fusion:** Fuse the denoised blocks together to obtain the final denoised image. **Code Block:** ```matlab % Image Reading image = imread('noisy_image.jpg'); % Image Block Division blocks = im2col(image, [8 8], 'sliding'); % Collaborative Filtering similar_blocks = find_similar_blocks(blocks); % Three-Dimensional Transform transformed_blocks = fft2(blocks); % Collaborative Domain Hard Thresholding thresholded_blocks = hard_threshold(transformed_blocks); % Inverse Three-Dimensional Transform denoised_blocks = ifft2(thresholded_blocks); % Block Fusion denoised_image = col2im(denoised_blocks, [size(image, 1), size(image, 2)], [8 8], 'sliding'); ``` **Logical Analysis:** * The `im2col` function divides the image into overlapping blocks of size 8×8. * The `find_similar_blocks` function finds the set of blocks most similar to each block. * The `fft2` function performs two-dimensional fast Fourier transforms on each block. * The `hard_threshold` function applies hard thresholding to the transform coefficients. * The `ifft2` function performs inverse two-dimensional fast Fourier transforms on the thresholded blocks. * The `col2im` function fuses the denoised blocks together to obtain the final denoised image. **Parameter Description:** * `'noisy_image.jpg'`: The input noisy image. * `[8 8]`: The size of the blocks. * `'sliding'`: The mode of block division, indicating overlapping blocks. * `'similar_blocks'`: The set of similar blocks. * `'hard_threshold'`: The hard thresholding function. * `'denoised_image'`: The image after denoising. # 3.1 BM3D Algorithm MATLAB Function
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

PLECS专家养成:版本4.1全方位提升攻略

![PLECS专家养成:版本4.1全方位提升攻略](https://cdn.imperix.com/doc/wp-content/uploads/2021/03/plant_example_PLECS.png) # 摘要 PLECS软件作为电力电子系统建模与仿真的先进工具,随着版本的迭代不断强化其功能与性能。本文首先介绍了PLECS的基本操作和界面,随后深入解析了PLECS 4.1版本的新功能,包括用户界面的改进、高级仿真技术的引入、性能提升及兼容性的增强,以及用户自定义功能的扩展。接着,本文探讨了PLECS在仿真技术方面的深入应用,如仿真模型的构建、优化、结果分析处理,以及实际应用案例研究

【性能调优秘籍】:揭秘SINUMERIK_840D_810D高级调试技术

# 摘要 本论文详细探讨了SINUMERIK 840D/810D数控系统的性能调优。首先,本文介绍了性能调优的理论基础,包括性能瓶颈的识别、性能指标的设定以及系统资源的配置管理。进而深入分析了高级调试工具和技术的应用,并通过案例研究展示了提高加工效率、延长设备寿命以及实现可持续生产的具体实践。最后,论文展望了新技术如人工智能和物联网对性能调优带来的影响,并预测了数控系统智能化和调优工作标准化的未来趋势。 # 关键字 SINUMERIK 840D/810D;性能调优;高级调试工具;数据分析;智能生产;设备寿命管理 参考资源链接:[西门子SINUMERIK 810D/840D系统调试手册](h

Abaqus安装常见问题汇总及解决方法

![Abaqus安装常见问题汇总及解决方法](https://security.tencent.com/uploadimg_dir/202004/6f24a01dfa6a6fc8655df3dbac118310.png) # 摘要 本文围绕Abaqus软件的安装、配置及问题解决展开深入探讨。首先,本文详细介绍了Abaqus的基础安装要求和系统配置,为用户提供了安装环境的准备指南。然后,针对安装过程中可能出现的环境配置、文件获取与验证、错误解决等问题,给出了具体的问题分析和解决步骤。接着,文章强调了安装后环境变量的配置与验证的重要性,并通过实际案例验证安装的成功与否。高级诊断与问题解决章节阐述

【图书管理系统的数据库构建】:从零开始,打造高效安全的信息库

![【图书管理系统的数据库构建】:从零开始,打造高效安全的信息库](https://compubinario.com/wp-content/uploads/2019/09/Sistema-de-Admnistracion-de-Biblioteca-1024x555.jpg) # 摘要 本文全面介绍图书管理系统的数据库设计与实践操作,从理论基础到实际应用,系统地阐述了数据库的构建和管理过程。首先,概述了图书管理系统的基本概念及其需求,然后深入探讨了关系型数据库的基本理论、设计原则和数据库的构建实践,包括数据库的安装、配置、表结构设计以及安全性设置。接着,重点介绍了图书管理系统中数据库操作的实

【技术深度解析】:深度学习如何革新乒乓球旋转球预测技术?

![【技术深度解析】:深度学习如何革新乒乓球旋转球预测技术?](https://blog.arduino.cc/wp-content/uploads/2020/03/FY3WXSQK7KS9GIJ.LARGE_.jpg) # 摘要 随着深度学习技术的迅速发展,其在体育领域,如乒乓球旋转球预测方面的应用日益广泛。本文首先介绍了乒乓球旋转球的基础知识,包括其定义、分类、物理原理以及旋转球预测所面临的挑战。然后,深入探讨了深度学习在旋转球预测中的理论基础、模型构建、训练、性能评估和实际应用。文中还涵盖了深度学习模型在实战演练中的数据采集与处理技术、模型部署和实时性能优化,并对旋转球预测的未来展望进

【机器人通信协议详解】:掌握RoboTeam软件中的网络通信

![【机器人通信协议详解】:掌握RoboTeam软件中的网络通信](https://img-blog.csdnimg.cn/img_convert/616e30397e222b71cb5b71cbc603b904.png) # 摘要 随着机器人技术的发展,机器人通信协议的重要性日益凸显。本文首先概述了机器人通信协议的基础,介绍了RoboTeam软件的网络通信机制,包括其架构、通信模型及消息传递协议。随后深入探讨了机器人通信协议的理论基础,包括不同类型协议的比较和实现原理,以及在RoboTeam中的优化策略。通过具体实践案例分析,本文展示了点对点通信、多机器人协作通信以及实时监控与远程控制的应

【CST仿真实战】:波导端口离散端口信号处理全解析,从理论到实践

# 摘要 本文全面介绍CST仿真实战在波导端口信号处理中的应用。首先,对波导端口信号的基础理论进行了概述,包括电磁波的产生与传播、电磁场分布、端口信号的分类及其频谱分析。随后,文中详细阐述了如何在CST软件中进行波导端口的模拟操作,包括软件界面功能简介、仿真实例创建以及离散端口信号仿真流程。进而,本文针对波导端口信号的分析与处理进行了实践探讨,涉及到信号的模拟分析、信号处理技术的应用以及仿真结果的实际应用分析。最后,文章对波导端口信号处理的高级主题进行了探讨,涵盖高频波导端口的信号完整性分析、多端口系统的信号耦合处理以及波导端口信号处理领域的最新进展。本文旨在为相关领域的研究者和工程师提供一个

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )