plt.scatter(test_pred[:, 0], test_pred[:, 1], marker='.', c='b') plt.scatter(test_label[:, 0], test_label[:, 1], marker='.', c='r')什么意思
时间: 2024-02-02 10:05:17 浏览: 208
这段代码是使用Matplotlib绘制散点图来展示模型预测结果和真实标签结果。
`plt.scatter()`是Matplotlib库中用于绘制散点图的函数。其中第一个参数是x轴数据,第二个参数是y轴数据,`marker`参数指定散点的形状,`c`参数指定散点的颜色。
第一行代码`plt.scatter(test_pred[:, 0], test_pred[:, 1], marker='.', c='b')`中,`test_pred[:, 0]`表示取二维数组`test_pred`中所有行的第一列数据,`test_pred[:, 1]`表示取所有行的第二列数据,这两个数据分别作为x轴和y轴数据绘制蓝色的散点图,代表模型的预测结果。
第二行代码`plt.scatter(test_label[:, 0], test_label[:, 1], marker='.', c='r')`中,`test_label[:, 0]`和`test_label[:, 1]`也分别表示二维数组`test_label`中所有行的第一列和第二列数据,这两个数据同样作为x轴和y轴数据绘制红色的散点图,代表真实标签结果。
通过比较蓝色和红色的散点图,可以直观地了解模型预测结果和真实标签结果之间的差异。
相关问题
KNN=KNearestNeighbor() KNN.train(X_train, y_train) y_pred = KNN.predict(X_test, k=6) accuracy = np.mean(y_pred == y_test) print('测试集预测准确率:%f' % accuracy) plt.scatter(X_setosa_train[:, 0], X_setosa_train[:, 2], color='red', marker='o', label='setosa_train') plt.scatter(X_versicolor_train[:, 0], X_versicolor_train[:, 2], color='blue', marker='^', label='versicolor_train') plt.scatter(X_virginica_train[:, 0], X_virginica_train[:, 2], color='green', marker='s', label='virginica_train') plt.scatter(X_setosa_test[:, 0], X_setosa_test[:, 2], color='y', marker='o', label='setosa_test') plt.scatter(X_versicolor_test[:, 0], X_versicolor_test[:, 2], color='y', marker='^', label='versicolor_test') plt.scatter(X_virginica_test[:, 0], X_virginica_test[:, 2], color='y', marker='s', label='virginica_test') plt.xlabel('sepal length') plt.ylabel('petal length') plt.legend(loc = 4) plt.show()注释每一行代码
以下是对每一行代码的注释:
```python
# 初始化 KNN 模型
KNN = KNearestNeighbor()
# 使用训练集数据进行模型训练
KNN.train(X_train, y_train)
# 使用测试集数据进行预测,并指定 k=6
y_pred = KNN.predict(X_test, k=6)
# 计算模型的准确率
accuracy = np.mean(y_pred == y_test)
# 绘制散点图,展示不同种类的花的数据分布
plt.scatter(X_setosa_train[:, 0], X_setosa_train[:, 2], color='red', marker='o', label='setosa_train')
plt.scatter(X_versicolor_train[:, 0], X_versicolor_train[:, 2], color='blue', marker='^', label='versicolor_train')
plt.scatter(X_virginica_train[:, 0], X_virginica_train[:, 2], color='green', marker='s', label='virginica_train')
plt.scatter(X_setosa_test[:, 0], X_setosa_test[:, 2], color='y', marker='o', label='setosa_test')
plt.scatter(X_versicolor_test[:, 0], X_versicolor_test[:, 2], color='y', marker='^', label='versicolor_test')
plt.scatter(X_virginica_test[:, 0], X_virginica_test[:, 2], color='y', marker='s', label='virginica_test')
# 设置 x 轴和 y 轴的标签
plt.xlabel('sepal length')
plt.ylabel('petal length')
# 显示图例,并设置其位置
plt.legend(loc = 4)
# 显示图形
plt.show()
```
import matplotlib.pyplot as plt import xlutils import openpyxl import numpy as np import xlrd from sklearn.cluster import KMeans from sklearn import datasets wk = openpyxl.load_workbook("D:\localDirection\细分表格\X(28465-28775)\\531.xlsx") ws = wk.active data= xlrd.open_workbook('D:\localDirection\细分表格\X(28465-28775)\\531.xls') worksheet = data.sheet_by_name("Sheet1") X = data[:, :2] # #表示我们取特征空间中的4个维度 print(X.shape) # 绘制数据分布图 plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend(loc=2) plt.show() estimator = KMeans(n_clusters=3) # 构造聚类器 estimator.fit(X) # 聚类 label_pred = estimator.labels_ # 获取聚类标签 # 绘制k-means结果 x0 = X[label_pred == 0] x1 = X[label_pred == 1] x2 = X[label_pred == 2] plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1') plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend(loc=2) plt.show()
这段代码是用于读取并处理 Excel 文件数据,并使用 KMeans 聚类算法对数据进行分析和可视化。具体来说:
- 第1行导入了 matplotlib.pyplot、xlutils、openpyxl、numpy、xlrd 等库
- 第2至9行分别打开 Excel 文件并读取数据,其中第6行使用了 xlrd 库的 sheet_by_name 函数获取工作表“Sheet1”中的数据
- 第10行使用 [:, :2] 将数据集中的前两列数据存储在 X 变量中(注意:应该使用 np.array(data) 将数据转换为 numpy 数组后再进行索引)
- 第12至19行使用 matplotlib 库的 scatter 函数将数据集 X 中的前两列特征数据作为横纵坐标,以散点图的形式展示在坐标系中
- 第21至23行使用 KMeans 算法构造聚类器,并使用 fit 函数对数据进行聚类
- 第25行使用 labels_ 属性获取聚类标签
- 第27至35行使用 matplotlib 库的 scatter 函数将聚类结果以不同颜色的散点图展示在坐标系中,其中 label0、label1、label2 分别表示聚类结果的三个簇(注意:应该使用 np.array(X)[label_pred == 0] 将标签应用到数据集中,获取聚类结果的每个簇的数据)
阅读全文