import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris iris=load_iris() X=iris.data[:,2:] KMeans1 =KMeans(n_clusters=3) KMeans1.fit(X) label_pred=KMeans1.labels_ x0 =X[label_pred==0] x1 =x[label_pred==1] x2=x[label_pred==2] plt.scatter(x0[:, 0], x0[:, 1], c="r", marker='D', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c="g", marker='*', label='label1') plt.scatter(x2[:, 0], x3[:, 1], c="b", marker='+', label='label2') plt.xlabel('petal length') plt.ylabel('petal width') plt.legend() plt.show()
时间: 2024-05-04 11:17:35 浏览: 120
这段代码使用了KMeans聚类算法对鸢尾花数据集进行聚类,并将聚类结果可视化。具体步骤如下:
1. 载入必要的Python库:matplotlib.pyplot、sklearn.cluster和sklearn.datasets。
2. 载入iris数据集。
3. 选取iris数据集中的第3列和第4列作为特征,将其存储在X中。
4. 初始化KMeans聚类算法,设置聚类数为3个。
5. 对选取的特征进行聚类。
6. 得到聚类标签。
7. 根据聚类标签将数据集分成三个簇。
8. 使用matplotlib.pyplot库将每个簇可视化。其中,x0、x1和x2是分别代表三个簇的二维坐标点集,用不同颜色和形状的散点图表示。
9. 添加x轴和y轴的标签,以及图例。
10. 显示图像。
注意:代码中有一处错误,应将x[label_pred==1]改为X[label_pred==1]。
相关问题
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # K均值聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) # 打印聚类结果 print('kmeans.labels_:', kmeans.labels_) print('kmeans.cluster_centers_:', kmeans.cluster_centers_) # 可视化聚类效果 plt.figure(figsize=(8, 6)) plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.title('Clustering result') plt.show()分析一下这段代码以及运行代码后的结果
这段代码实现了使用K均值聚类对鸢尾花数据集进行聚类分析,并可视化聚类结果。具体过程如下:
1. 导入需要的模块,包括numpy、matplotlib.pyplot和sklearn.cluster中的KMeans类和sklearn.datasets中的load_iris函数。
2. 加载鸢尾花数据集,将数据集中的数据赋值给变量X,将数据集中的标签赋值给变量y。
3. 定义KMeans类的实例kmeans,指定聚类数为3,随机种子为0。
4. 使用.fit()方法对数据集进行聚类,得到聚类结果。
5. 打印聚类结果,包括每个样本所属的聚类标签和聚类中心点的坐标。
6. 可视化聚类结果,使用matplotlib.pyplot的scatter()函数,将数据集中的前两个特征作为x轴和y轴,将聚类标签作为点的颜色,显示聚类结果。
运行结果显示,数据集中的三个品种的鸢尾花被成功地分成了三个簇,并且聚类效果较好。
from sklearn.datasets import load_iris from sklearn.cluster import KMeans # 加载莺尾花数据集 iris = load_iris() X = iris.data # 创建 KMeans 模型并拟合数据 kmeans = KMeans(n_clusters=3, random_state=0) kmeans.fit(X) # 打印簇中心点的坐标 print(kmeans.cluster_centers_) # 打印每个数据点所属的簇 print(kmeans.labels_) from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier from sklearn.tree import plot_tree import matplotlib.pyplot as plt # 加载莺尾花数据集 iris = load_iris() X = iris.data y = iris.target # 创建决策树分类器并拟合数据 clf = DecisionTreeClassifier(random_state=0) clf.fit(X, y) # 绘制决策树 plt.figure(figsize=(20,10)) plot_tree(clf, filled=True) plt.show(),怎么调整决策树图片大小
要调整决策树图片的大小,可以在调用`plt.figure()`函数时指定`figsize`参数来设置图片的尺寸。例如,将`figsize`参数设置为`(width, height)`的元组即可调整图片的大小。下面是示例代码:
```python
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
# 加载莺尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 创建决策树分类器并拟合数据
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X, y)
# 绘制决策树并调整图片大小
plt.figure(figsize=(10, 8))
plot_tree(clf, filled=True)
plt.show()
```
以上代码中,通过将`figsize`参数设置为`(10, 8)`来调整决策树图片的大小。你可以根据实际需要调整`figsize`参数的值。
阅读全文