import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris iris=load_iris() X=iris.data[:,2:] KMeans1 =KMeans(n_clusters=3) KMeans1.fit(X) label_pred=KMeans1.labels_ x0 =X[label_pred==0] x1 =x[label_pred==1] x2=x[label_pred==2] plt.scatter(x0[:, 0], x0[:, 1], c="r", marker='D', label='label0') plt.scatter(x1[:, 0], x1[:, 1], c="g", marker='*', label='label1') plt.scatter(x2[:, 0], x3[:, 1], c="b", marker='+', label='label2') plt.xlabel('petal length') plt.ylabel('petal width') plt.legend() plt.show()
时间: 2024-05-04 07:17:35 浏览: 126
Matplotlib.pyplot 三维绘图的实现示例
这段代码使用了KMeans聚类算法对鸢尾花数据集进行聚类,并将聚类结果可视化。具体步骤如下:
1. 载入必要的Python库:matplotlib.pyplot、sklearn.cluster和sklearn.datasets。
2. 载入iris数据集。
3. 选取iris数据集中的第3列和第4列作为特征,将其存储在X中。
4. 初始化KMeans聚类算法,设置聚类数为3个。
5. 对选取的特征进行聚类。
6. 得到聚类标签。
7. 根据聚类标签将数据集分成三个簇。
8. 使用matplotlib.pyplot库将每个簇可视化。其中,x0、x1和x2是分别代表三个簇的二维坐标点集,用不同颜色和形状的散点图表示。
9. 添加x轴和y轴的标签,以及图例。
10. 显示图像。
注意:代码中有一处错误,应将x[label_pred==1]改为X[label_pred==1]。
阅读全文