给plt.scatter加相关分析线

时间: 2023-10-14 16:20:36 浏览: 73
要给 `plt.scatter` 加相关分析线,可以使用 `numpy` 库计算出数据的相关系数,然后使用 `plt.plot` 画出相关分析线。以下是一个简单的示例代码: ```python import numpy as np import matplotlib.pyplot as plt # 生成数据 x = np.random.rand(50) y = 2 * x + np.random.rand(50) # 计算相关系数 corr_coef = np.corrcoef(x, y)[0, 1] # 绘制散点图和相关分析线 plt.scatter(x, y) plt.plot([min(x), max(x)], [min(x) * corr_coef, max(x) * corr_coef], color='red') # 添加图例和坐标轴标签 plt.legend(['Correlation analysis line'], loc='upper left') plt.xlabel('x') plt.ylabel('y') # 显示图形 plt.show() ``` 在这个示例中,我们首先生成了一些随机数据,然后使用 `np.corrcoef` 函数计算出数据的相关系数。然后,我们使用 `plt.plot` 画出相关分析线,这条线的斜率就是相关系数。最后,我们添加了图例和坐标轴标签,并使用 `plt.show` 显示图形。
相关问题

data = pd.read_csv('/home/w123/Documents/fatigue_detecting-master/TXT-data/5.14/2/Eye aspect ratio.txt') y = data.iloc[:, :-1].values.reshape(-1, 1) X = data.iloc[:, -1].values.reshape(-1, 1) regressor = LinearRegression() regressor.fit(X, y) y_pred = regressor.predict(X) print("Regression Function: y = {:.2f} + {:.2f}x".format(regressor.intercept_[0], regressor.coef_[0][0])) plt.scatter(X, y, color='blue') plt.plot(X, y_pred, color='red') plt.title('Linear Regression') plt.xlabel('Independent Variable') plt.ylabel('Dependent Variable') plt.legend(['Regression Line', 'Observations']) plt.show()改成x,y,z数据分析

假设你有一个名为data的Pandas DataFrame,其中包含三列数据,分别是x,y和z。那么你可以使用以下代码进行线性回归分析: ``` import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt # 读取数据 data = pd.read_csv('/path/to/data.csv') # 将数据分成x、y、z三个变量 x = data['x'].values.reshape(-1, 1) y = data['y'].values.reshape(-1, 1) z = data['z'].values.reshape(-1, 1) # 创建线性回归模型 regressor = LinearRegression() # 训练模型 regressor.fit(np.hstack((x, y)), z) # 预测z值 z_pred = regressor.predict(np.hstack((x, y))) # 打印回归方程 print("Regression Function: z = {:.2f} + {:.2f}x + {:.2f}y".format( regressor.intercept_[0], regressor.coef_[0][0], regressor.coef_[0][1])) # 绘制散点图和回归线 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z, c='blue', marker='o') ax.plot_surface(x, y, z_pred.reshape(x.shape), color='red', alpha=0.5) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') plt.show() ``` 这段代码将数据分成了x、y、z三个变量,然后使用`np.hstack`将x和y合并为一个2D数组,作为线性回归模型的输入。然后训练模型,并使用`np.hstack`将x和y合并为一个2D数组,作为预测z值的输入。最后,绘制了3D散点图和回归平面。

import numpy as np import matplotlib.pyplot as plt import pandas as pd w = pd.read_csv('BostonHousing2.csv') w_new=w.drop(columns=["chas"],axis=1) wn0 = w_new.columns wn = wn0[5:] f = plt.figure(figsize=(16,8)) k=0 for i in range(len(wn)): for j in range(len(wn)): k=k+1 if i!=j: f.add_subplot(len(wn),len(wn),k) else: f.add_subplot(len(wn),len(wn),k) plt.scatter([0,1],[0,1]) plt.text(.5,.5,wn[i],\ ha='center',va='center',size=10) y=np.array(w[wn[0]])[:,np.newaxis] X=np.array(w[wn[1:]]) from sklearn import linear_model regr=linear_model.LinearRegression(fit_intercept=False) regr.fit(X,y) print(regr.coef_) res=y-regr.predict(X) import scipy.stats as stats import pylab res.shape=res.shape[0] f=plt.figure(figsize=(12,5)) f.add_subplot(121) plt.scatter(regr.predict(X),res) plt.plot(regr.predict(X),np.ones(len(y))) plt.xlabel('Fitted values') plt.ylabel('Residuals') f.add_subplot(122) stats.probplot(res,dist="norm",plot=pylab) plt.show() from sklearn.tree import DecisionTreeRegressor from sklearn import tree import graphviz regr2 =DecisionTreeRegressor(max_depth=4,random_state=100) regr2 = regr2.fit(X,y) dot_data=tree.export_graphviz(regr2,feature_names=wn[1:],out_file=None) graph=graphviz.Source(dot_data) f=plt.figure(figsize=(12,5)) f.add_subplot(111) height=regr2.feature_importances_ bars = wn[1:] y_pos=np.arange(len(bars)) plt.bar(y_pos,height) plt.xticks(y_pos,bars) plt.yticks() plt.show() 分析上述代码的运行结果

这段代码的运行结果将显示出多个图表和一些数字输出。 首先,代码中的循环将生成一个图表,该图表的每个子图都是特征与特征之间的散点图。这些散点图中,特征与自身的散点图上会显示特征的名称。 接下来,代码计算了线性回归模型的系数(coef_),并将预测值与实际值之间的残差保存在变量res中。然后,它绘制了两个子图:左边的子图显示了预测值与残差之间的散点图,并画出了一条水平线表示残差为1的边界;右边的子图是正态概率图,用于检验残差是否符合正态分布。 接下来,代码使用决策树回归模型进行拟合,并使用graphviz库将决策树可视化为一个图形。这部分代码将生成一个决策树模型的可视化结果。 最后,代码绘制了一个柱状图,显示了特征的重要性。柱状图的x轴是特征的名称,y轴是特征的重要性值。 请注意,以上结果是根据'BostonHousing2.csv'文件和特定参数设置得出的。如果你使用不同的数据集或参数,可能会得到不同的结果。
阅读全文

相关推荐

import numpy as np import matplotlib.pyplot as plt from sklearn import svm from sklearn.datasets import make_blobs from sklearn import model_selection from sklearn.metrics import f1_score def show_svm(a, b, bt): plt.figure(bt) plt.title('SVM with ' + bt) # 建立图像坐标 axis = plt.gca() plt.scatter(a[:, 0], a[:, 1], c=b, s=30) xlim = [a[:, 0].min(), a[:, 0].max()] ylim = [a[:, 1].min(), a[:, 1].max()] # 生成两个等差数列 xx = np.linspace(xlim[0], xlim[1], 50) yy = np.linspace(ylim[0], ylim[1], 50) X, Y = np.meshgrid(xx, yy) xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) # 画出分界线 axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=200, linewidths=1, facecolors='none') if __name__ == '__main__': # data = np.loadtxt('separable_data.txt', delimiter=',') # data = np.loadtxt('non_separable_data.txt', delimiter=',') # data = np.loadtxt('banknote.txt', delimiter=',') data = np.loadtxt('ionosphere.txt', delimiter=',') # data = np.loadtxt('wdbc.txt', delimiter=',') X = data[:, 0:-1] y = data[:, -1] """标签中有一类标签为1""" y = y + 1 ymin = min(y) if not (1 in set(y)): ll = max(list(set(y))) + 1 for i in range(len(y)): if y[i] == ymin: y[i] = 1 # 建立一个线性核(多项式核)的SVM clf = svm.SVC(kernel='linear') clf.fit(X, y) """显示所有数据用于训练后的可视化结果""" show_svm(X, y, 'all dataset') """divide the data into two sections: training and test datasets""" X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.1, random_state=42) """training""" clf = svm.SVC(kernel='linear')#线性内核 # clf = svm.SVC(kernel='poly')# 多项式内核 # clf = svm.SVC(kernel='sigmoid')# Sigmoid内核 clf.fit(X_train, y_train) # show_svm(X_train, y_train, 'training dataset') """predict""" pred = clf.predict(X_test) pred = np.array(pred) y_test = np.array(y_test) print(f'SVM 的预测结果 f1-score:{f1_score(y_test, pred)}') # plt.show()结果与分析

最新推荐

recommend-type

使用matplotlib动态刷新指定曲线实例

接着,我们创建了一个等差数列`x` 和一个与之相关的函数`y`。然后,我们初始化一个图形`fig` 和一个子图`ax`,并在子图上散点图。通过调用 `plt.ion()`,我们启用交互模式,允许图形在运行时更新。 接下来的循环中...
recommend-type

Python绘图之二维图与三维图详解

在Python编程中,数据可视化是数据分析和科学计算中不可或缺的一部分,而`matplotlib`库是Python最常用的数据可视化库之一。本文将深入探讨如何使用`matplotlib`进行二维和三维图形的绘制,帮助工程师们提升技术水平...
recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【自然语言处理】:R语言文本挖掘与情感分析入门指南

![【自然语言处理】:R语言文本挖掘与情感分析入门指南](https://wisdomml.in/wp-content/uploads/2022/08/tokenizer-1024x512.jpg) # 1. 自然语言处理和R语言基础 自然语言处理(NLP)是计算机科学和人工智能领域的一个分支,旨在让计算机能够理解人类语言。随着大数据时代的到来,NLP在文本分析、信息检索、语音识别等方面的应用变得越来越广泛。R语言作为一种开源的统计编程语言,具有强大的数据处理和可视化功能,它在NLP领域的应用也越来越受到重视。本章将带领读者了解自然语言处理的基础知识,以及R语言在处理语言数据时的基本语法和功