用遗传算法求20个城市的tsp问题c++
时间: 2023-05-14 16:02:23 浏览: 220
TSP问题即旅行商问题,是指在有限的城市之间寻找一条最优路径,使得旅行商可以经过每个城市,并且最后回到起点。遗传算法是一种通过模拟自然进化过程来寻找优化解的算法,可以用来解决TSP问题。
求解20个城市的TSP问题可以遵循以下步骤:
1.表示问题:将20个城市编号,形成某种表示方式,如矩阵。
2.初始化群体:根据问题的表示方式,初始化一群个体,每个个体代表一种路径,群体中的个体可以是随机生成的,也可以使用其他启发式算法来生成。
3.选择操作:根据每个个体的路径长度,计算每个个体的适应度,适应度代表个体在解空间中的优劣。按照适应度选择一定数量的个体,用于交叉和变异。
4.交叉操作:从选择的个体中任意选取两个作为父母,生成新的个体。交叉操作的方式可以采用多种方式,如部分映射交叉法、序列交叉法等。
5.变异操作:以一定的概率对每个个体进行变异操作,变异操作可以是交换某两个城市的位置,或将某几个城市之间的路径反转等。
6.代替操作:用新的个体代替原先的个体,继续进行下一轮演化。
7.终止条件:达到一定的代数或者适应度,算法停止,输出最优解。
通过遗传算法求解TSP问题的关键是合理设置适应度函数和交叉、变异参数,以及合适的群体大小和代数。对于20个城市的问题,不同的参数设置可以得到不同结果。因此,在实际应用中需要根据具体情况进行参数的调整。
相关问题
用遗传算法解旅行商TSP问题C++
好的,下面是一个用遗传算法解决TSP问题的C++代码,供您参考:
```c++
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAXN = 100; // 最大城市数
const int MAX_GEN = 1000; // 最大迭代次数
const int POP_SIZE = 100; // 种群大小
const double MUTATION_RATE = 0.1; // 变异概率
const double CROSSOVER_RATE = 0.9; // 交叉概率
const double PI = 3.1415926535897932384626433832795;
int n; // 城市数
int dist[MAXN][MAXN]; // 城市间距离矩阵
int pop[POP_SIZE][MAXN]; // 种群
int fitness[POP_SIZE]; // 种群适应度
int best[MAX_GEN]; // 每代最优解
int best_distance = 0x7fffffff; // 最优路径长度
int best_path[MAXN]; // 最优路径
// 生成初始种群
void init_pop() {
for (int i = 0; i < POP_SIZE; i++) {
for (int j = 0; j < n; j++) {
pop[i][j] = j;
}
random_shuffle(pop[i], pop[i] + n);
}
}
// 计算城市间距离矩阵
void calc_dist() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> dist[i][j];
}
}
}
// 计算路径长度
int calc_distance(int *path) {
int res = 0;
for (int i = 0; i < n; i++) {
res += dist[path[i]][path[(i + 1) % n]];
}
return res;
}
// 计算适应度
void calc_fitness() {
for (int i = 0; i < POP_SIZE; i++) {
fitness[i] = 1.0 / calc_distance(pop[i]);
}
}
// 选择
int select() {
double p = (double)rand() / RAND_MAX;
int res = 0;
while (p > 0) {
p -= fitness[res];
res++;
}
return res - 1;
}
// 交叉
void crossover(int *parent1, int *parent2, int *child1, int *child2) {
int p1 = rand() % n;
int p2 = rand() % n;
if (p1 > p2) {
swap(p1, p2);
}
for (int i = p1; i <= p2; i++) {
child1[i] = parent1[i];
child2[i] = parent2[i];
}
int k1 = p2 + 1, k2 = p2 + 1;
while (k1 != p1 && k2 != p1) {
if (find(child1, child1 + n, parent2[k1 % n]) == child1 + n) {
child1[k1 % n] = parent2[k1 % n];
k1++;
}
if (find(child2, child2 + n, parent1[k2 % n]) == child2 + n) {
child2[k2 % n] = parent1[k2 % n];
k2++;
}
}
}
// 变异
void mutate(int *individual) {
int p1 = rand() % n;
int p2 = rand() % n;
swap(individual[p1], individual[p2]);
}
// 遗传算法求解TSP问题
void solve_tsp() {
init_pop();
calc_fitness();
for (int i = 0; i < MAX_GEN; i++) {
int new_pop[POP_SIZE][MAXN];
for (int j = 0; j < POP_SIZE; j += 2) {
int parent1 = select();
int parent2 = select();
int child1[MAXN], child2[MAXN];
for (int k = 0; k < n; k++) {
child1[k] = child2[k] = -1;
}
if ((double)rand() / RAND_MAX < CROSSOVER_RATE) {
crossover(pop[parent1], pop[parent2], child1, child2);
} else {
for (int k = 0; k < n; k++) {
child1[k] = pop[parent1][k];
child2[k] = pop[parent2][k];
}
}
if ((double)rand() / RAND_MAX < MUTATION_RATE) {
mutate(child1);
}
if ((double)rand() / RAND_MAX < MUTATION_RATE) {
mutate(child2);
}
for (int k = 0; k < n; k++) {
new_pop[j][k] = child1[k];
new_pop[j + 1][k] = child2[k];
}
}
for (int j = 0; j < POP_SIZE; j++) {
for (int k = 0; k < n; k++) {
pop[j][k] = new_pop[j][k];
}
}
calc_fitness();
int max_fitness_idx = max_element(fitness, fitness + POP_SIZE) - fitness;
int cur_distance = calc_distance(pop[max_fitness_idx]);
if (cur_distance < best_distance) {
best_distance = cur_distance;
for (int j = 0; j < n; j++) {
best_path[j] = pop[max_fitness_idx][j];
}
}
best[i] = best_distance;
}
}
// 输出结果
void print_result() {
cout << "Path: ";
for (int i = 0; i < n; i++) {
cout << best_path[i] << " ";
}
cout << endl;
cout << "Distance: " << best_distance << endl;
}
int main() {
srand((unsigned)time(NULL));
cin >> n;
calc_dist();
solve_tsp();
print_result();
return 0;
}
```
在代码中,种群中的每个个体表示一条路径,每个个体由城市编号组成。计算适应度时,将路径长度的倒数作为适应度,目的是让路径长度短的个体具有更高的适应度。选择时,使用轮盘赌算法选择个体。交叉时,使用部分匹配交叉(PMX)算法进行交叉。变异时,随机交换路径上的两个城市。最终输出最优路径及其长度。
遗传算法求解tsp问题c++
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择过程的优化搜索技术,常用于解决复杂问题,比如旅行商问题(Travelling Salesman Problem, TSP)。TSP是一个经典的组合优化问题,目标是最短路径经过所有城市恰好一次并返回原点。
在C++中使用遗传算法求解TSP问题,通常包括以下几个步骤:
1. **编码设计**:将城市对作为染色体,每个基因代表一条边,染色体长度等于城市的数量减一。常用的编码方式有顺序编码、轮盘赌编码等。
2. **初始化种群**:随机生成一组初始解(即染色体),代表一系列可能的旅行路线。
3. **适应度函数**:计算每条路线的总距离,适应度函数就是总距离的反面,越短的路线适应度越高。
4. **选择操作**:通过概率选择(如轮盘赌选择)选出适应度较高的个体进入下一代。
5. **交叉操作**:两个优秀的个体进行配对交叉,生成新的变异后代,通常使用单点交叉或二点交叉。
6. **突变操作**:在新个体中应用一定的突变率,引入随机变异增加多样性。
7. **迭代和终止条件**:重复上述步骤多次,直到达到预设的代数限制或找到满足精度要求的解。
阅读全文