acnet放在yolov5中,代码实现
时间: 2023-08-31 08:18:20 浏览: 120
将 Acnet 网络放在 YOLOv5 中需要进行以下步骤:
1.在 `models/yolo.py` 文件中导入 Acnet 模块:
```python
from models.common import Conv, BottleneckCSP, ACBlock
```
2.在 `models/yolo.py` 文件中修改 `CSPDarknet` 类的定义,将原先的卷积层替换为 ACBlock:
```python
class CSPDarknet(nn.Module):
def __init__(self, layers, in_channels=3, stem_channels=32, out_channels=256):
super(CSPDarknet, self).__init__()
self.stem = nn.Sequential(
Conv(in_channels, stem_channels, kernel_size=3, stride=1, padding=1, bias=False),
ACBlock(stem_channels, stem_channels*2, 3, 2, 1),
BottleneckCSP(stem_channels*2, stem_channels*2, n=1)
)
...
def forward(self, x):
x = self.stem(x)
...
```
3.在 `models/yolo.py` 文件中修改 `YoloV5` 类的定义,将原先的卷积层替换为 ACBlock:
```python
class YoloV5(nn.Module):
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None):
super(YoloV5, self).__init__()
...
self.backbone = nn.Sequential(
...
ACBlock(512, 1024, 3, 2, 1),
BottleneckCSP(1024, 1024, n=3, shortcut=False),
ACBlock(1024, 512, 3, 2, 1),
...
)
...
def forward(self, x):
...
x = self.backbone(x)
...
```
这样就可以将 Acnet 网络放在 YOLOv5 中进行训练了。
阅读全文