解释一下这个代码:class Flatten(nn.Module): def forward(self, input): return input.view(input.size(0),-1)
时间: 2023-06-01 12:06:40 浏览: 166
这段代码定义了一个名为Flatten的类,它是nn.Module的子类,即一个PyTorch模型的基本组成部分。该类的作用是将输入张量展平成一维,以便于传递给后续的全连接层等模块。
具体实现是在forward函数中,输入参数input是一个张量,通过张量的view方法将其变形成一个新的张量,第一个维度不变,第二个维度变为-1,表示将第二个维度变成需要的大小,由系统自动推断。返回的张量就是展平后的结果。
例如,如果输入张量的形状为[batch_size, channel, height, width],那么经过Flatten操作后,输出张量的形状变为[batch_size, channel*height*width]。
相关问题
class ResidualBlock(nn.Module): def init(self, in_channels, out_channels, dilation): super(ResidualBlock, self).init() self.conv = nn.Sequential( nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU(), nn.Conv1d(out_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation), nn.BatchNorm1d(out_channels), nn.ReLU() ) self.attention = nn.Sequential( nn.Conv1d(out_channels, out_channels, kernel_size=1), nn.Sigmoid() ) self.downsample = nn.Conv1d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else None def forward(self, x): residual = x out = self.conv(x) attention = self.attention(out) out = out * attention if self.downsample: residual = self.downsample(residual) out += residual return out class VMD_TCN(nn.Module): def init(self, input_size, output_size, n_k=1, num_channels=16, dropout=0.2): super(VMD_TCN, self).init() self.input_size = input_size self.nk = n_k if isinstance(num_channels, int): num_channels = [num_channels*(2**i) for i in range(4)] self.layers = nn.ModuleList() self.layers.append(nn.utils.weight_norm(nn.Conv1d(input_size, num_channels[0], kernel_size=1))) for i in range(len(num_channels)): dilation_size = 2 ** i in_channels = num_channels[i-1] if i > 0 else num_channels[0] out_channels = num_channels[i] self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size)) self.pool = nn.AdaptiveMaxPool1d(1) self.fc = nn.Linear(num_channels[-1], output_size) self.w = nn.Sequential(nn.Conv1d(num_channels[-1], num_channels[-1], kernel_size=1), nn.Sigmoid()) # 特征融合 门控系统 # self.fc1 = nn.Linear(output_size * (n_k + 1), output_size) # 全部融合 self.fc1 = nn.Linear(output_size * 2, output_size) # 只选择其中两个融合 self.dropout = nn.Dropout(dropout) # self.weight_fc = nn.Linear(num_channels[-1] * (n_k + 1), n_k + 1) # 置信度系数,对各个结果加权平均 软投票思路 def vmd(self, x): x_imfs = [] signal = np.array(x).flatten() # flatten()必须加上 否则最后一个batch报错size不匹配! u, u_hat, omega = VMD(signal, alpha=512, tau=0, K=self.nk, DC=0, init=1, tol=1e-7) for i in range(u.shape[0]): imf = torch.tensor(u[i], dtype=torch.float32) imf = imf.reshape(-1, 1, self.input_size) x_imfs.append(imf) x_imfs.append(x) return x_imfs def forward(self, x): x_imfs = self.vmd(x) total_out = [] # for data in x_imfs: for data in [x_imfs[0], x_imfs[-1]]: out = data.transpose(1, 2) for layer in self.layers: out = layer(out) out = self.pool(out) # torch.Size([96, 56, 1]) w = self.w(out) out = w * out # torch.Size([96, 56, 1]) out = out.view(out.size(0), -1) out = self.dropout(out) out = self.fc(out) total_out.append(out) total_out = torch.cat(total_out, dim=1) # 考虑w1total_out[0]+ w2total_out[1],在第一维,权重相加得到最终结果,不用cat total_out = self.dropout(total_out) output = self.fc1(total_out) return output优化代码
1. 代码中的注释最好用英文,这样可以方便其他国家的程序员阅读和理解。
2. 在ResidualBlock类中,应该将init()改为__init__(),这是Python中的一个特殊方法,用于初始化类的实例变量。
3. 对于VMD_TCN类中的layers部分,可以使用一个for循环来代替多次重复的代码。例如:
```
for i in range(len(num_channels)):
dilation_size = 2 ** i
in_channels = num_channels[i-1] if i > 0 else num_channels[0]
out_channels = num_channels[i]
self.layers.append(ResidualBlock(in_channels, out_channels, dilation_size))
```
4. 不建议在forward()函数中使用numpy数组,应该使用PyTorch张量来保证代码的可重复性和GPU加速。例如,将self.vmd(x)中的signal变量改为torch.tensor(signal, dtype=torch.float32)。
5. 对于全连接层的输入尺寸,可以使用num_channels[-1] * self.nk代替output_size * (self.nk + 1),这样可以避免使用self.nk + 1这个魔数。
6. 在vmd()函数中,x_imfs可以使用PyTorch张量来存储,而不是使用Python列表。例如,可以使用torch.zeros((self.nk+1, self.input_size))来创建一个张量,并将每个u[i]复制到对应的张量中。这样可以避免在循环中多次创建张量,提高代码的效率。
7. 在forward()函数中,可以使用torch.cat()函数来将所有输出张量连接起来,而不是使用Python列表。例如,可以将total_out定义为一个空的张量,然后在每次迭代中使用torch.cat()函数将输出张量连接到total_out中。这样可以避免在循环中多次分配内存,提高代码的效率。
class TextCNN(nn.Module): def __init__(self,embedding_size, num_classes): super(TextCNN, self).__init__() self.W = nn.Embedding(len(vocab), embedding_size) self.conv = nn.Sequential( # conv:[input_channel(=1), output_channel(=3), (filter_height, filter_width),stride=1] nn.Conv2d(1, 3, (2, embedding_size)), nn.PReLU(), #nn.MaxPool2d((2, 1)), nn.AvgPool2d((2, 1)), ) self.fc = nn.Linear(147, num_classes) def forward(self, X): batch_size = X.shape[0] embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size] # 加一个维度,为了能输入卷积层[batch, channel(=1), sequence_length, embedding_size] embedding_X = embedding_X.unsqueeze(1) conved = self.conv(embedding_X) flatten = conved.view(batch_size, -1) output = self.fc(flatten) return output对这段模型进行解释
这是一个文本分类模型,使用了卷积神经网络(CNN)进行特征提取和分类。输入的是一个batch大小的文本序列,每个单词用词向量表示。模型首先将词向量转换为二维张量,然后通过一个卷积层进行特征提取,卷积核的大小为(2,embedding_size),输出通道数为3,使用PReLU作为激活函数。接着通过一个平均池化层对特征进行降维,最后通过一个全连接层输出分类结果。其中,W是一个Embedding层,用于将输入的单词索引转换为词向量表示。flatten将卷积层输出的特征拉平为一维向量,以便输入到全连接层。输出结果的大小为num_classes,表示分类的类别数量。
阅读全文