可以给我一个基于蚁群算法在栅格地图从起点到终点的路径规划python程序吗
时间: 2024-05-10 07:20:25 浏览: 103
蚁群算法代码_路径规划_蚁群算法_
5星 · 资源好评率100%
以下是一个基于蚁群算法在栅格地图从起点到终点的路径规划的Python程序:
```python
import random
import math
# 定义地图大小和起点、终点坐标
map = [[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]
start = (1, 1)
end = (7, 7)
# 定义蚂蚁数量、迭代次数、信息素挥发系数、信息素增加系数和启发因子
ant_count = 10
iter_count = 100
evaporation_rate = 0.5
alpha = 1
beta = 5
# 初始化信息素矩阵和距离矩阵
pheromone = [[0.1 for j in range(len(map[0]))] for i in range(len(map))]
distance = [[0 for j in range(len(map[0]))] for i in range(len(map))]
for i in range(len(map)):
for j in range(len(map[0])):
if map[i][j] == 0:
for ii in range(len(map)):
for jj in range(len(map[0])):
if map[ii][jj] == 0:
distance[i][j] += math.sqrt((i-ii)**2 + (j-jj)**2)
# 定义计算蚂蚁路径的函数
def calc_path():
paths = []
for k in range(ant_count):
path = []
cur = start
path.append(cur)
while cur != end:
next = None
max_prob = 0
for i in range(len(map)):
for j in range(len(map[0])):
if map[i][j] == 0 and (i, j) not in path:
prob = pheromone[i][j]**alpha * (1/distance[i][j])**beta
if prob > max_prob:
next = (i, j)
max_prob = prob
if next:
cur = next
path.append(cur)
paths.append(path)
return paths
# 定义更新信息素的函数
def update_pheromone(paths):
for i in range(len(map)):
for j in range(len(map[0])):
for k in range(ant_count):
if (i, j) in paths[k]:
pheromone[i][j] += 1/distance[i][j]
# 循环迭代计算路径
for i in range(iter_count):
paths = calc_path()
update_pheromone(paths)
for i in range(len(pheromone)):
for j in range(len(pheromone[0])):
pheromone[i][j] *= evaporation_rate
# 输出路径
print("Path:")
for i in range(len(paths[0])):
print(paths[0][i])
```
程序中,地图大小和起点、终点坐标被定义为常量。蚂蚁数量、迭代次数、信息素挥发系数、信息素增加系数和启发因子可以根据实际情况进行调整。程序首先初始化信息素矩阵和距离矩阵,然后循环迭代计算路径。每次迭代中,程序先计算所有蚂蚁的路径,然后根据路径更新信息素矩阵。最后输出路径。
阅读全文