python求10个坐标相互之间的距离并求出从第一个坐标开始经过其他几个坐标最后到达最后一个问题坐标的最短路线import math # 假设有8个坐标分别为 (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8) coordinates = [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8)] # 定义一个函数计算两个坐标之间的距离 def distance(x1, y1, x2, y2): return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) # 遍历每个坐标计算它们与其他坐标之间的距离 for i in range(len(coordinates)): print(f"第{i+1}个坐标与其他坐标之间的距离为:") for j in range(len(coordinates)): if i != j: dist = distance(coordinates[i][0], coordinates[i][1], coordinates[j][0], coordinates[j][1]) print(f"第{j+1}个坐标与第{i+1}个坐标之间的距离为:{dist}")在此代码基础上修改

时间: 2023-09-27 10:04:45 浏览: 34
import math # 假设有10个坐标分别为 (x1, y1), (x2, y2), ..., (x10, y10) coordinates = [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8), (x9, y9), (x10, y10)] # 定义一个函数计算两个坐标之间的距离 def distance(x1, y1, x2, y2): return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) # 初始化dp数组 dp = [[float('inf')]*10 for _ in range(8)] dp[0][0] = 0 # 使用动态规划算法求解最短路径 for i in range(1, 8): for j in range(1, 10): for k in range(j): dp[i][j] = min(dp[i][j], dp[i-1][k]+distance(coordinates[k][0], coordinates[k][1], coordinates[j][0], coordinates[j][1])) # 最终的最短路径长度为dp[7][9],即从第一个坐标到第十个坐标经过7个中间点的最短路径长度。 print("从第一个坐标到最后一个坐标的最短路径长度为:", dp[7][9])
相关问题

python求10个坐标相互之间的距离并求出从第一个坐标开始经过其他几个坐标最后到达最后一个问题坐标的最短路线

可以使用math库中的sqrt函数计算距离。假设有10个坐标点存储在列表coords中,可以使用以下代码求出每两个坐标点之间的距离: ```python import math def distance(coord1, coord2): """计算两个坐标点之间的距离""" x1, y1 = coord1 x2, y2 = coord2 return math.sqrt((x1-x2)**2 + (y1-y2)**2) distances = [] for i in range(len(coords)): row = [] for j in range(len(coords)): row.append(distance(coords[i], coords[j])) distances.append(row) ``` 其中distances是一个10x10的二维列表,表示每两个坐标点之间的距离。 接下来,可以使用动态规划算法求出从第一个坐标点到最后一个坐标点的最短路径。假设起点为0,终点为9,可以使用以下代码: ```python # 动态规划求最短路径 n = len(coords) dp = [[float('inf')] * n for _ in range(1 << n)] dp[1][0] = 0 for state in range(1, 1 << n): for i in range(n): if state & (1 << i): for j in range(n): if j != i and state & (1 << j): dp[state][i] = min(dp[state][i], dp[state ^ (1 << i)][j] + distances[j][i]) print(dp[(1 << n) - 1][n-1]) ``` 其中dp[state][i]表示经过state状态集合中的所有点,以i为结尾的最短路径长度。最终答案为dp[(1 << n) - 1][n-1],表示经过所有点后以终点为结尾的最短路径长度。 注意,上述代码的时间复杂度为O(2^n * n^2),对于n=10的情况还是比较快的,但是对于更大的n可能会很慢。如果需要处理更大的数据,可以使用更高效的算法,比如TSP问题的近似算法。

python求8个坐标相互之间的距离

好的,这里给出 Python 代码实现求8个坐标相互之间的距离: ```python import math # 假设有8个坐标分别为 (x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8) coordinates = [(x1, y1), (x2, y2), (x3, y3), (x4, y4), (x5, y5), (x6, y6), (x7, y7), (x8, y8)] # 定义一个函数计算两个坐标之间的距离 def distance(x1, y1, x2, y2): return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) # 遍历每个坐标计算它们与其他坐标之间的距离 for i in range(len(coordinates)): print(f"第{i+1}个坐标与其他坐标之间的距离为:") for j in range(len(coordinates)): if i != j: dist = distance(coordinates[i][0], coordinates[i][1], coordinates[j][0], coordinates[j][1]) print(f"第{j+1}个坐标与第{i+1}个坐标之间的距离为:{dist}") ``` 其中,math 模块中的 sqrt 函数用于求平方根。这段代码会输出每个坐标与其他坐标之间的距离。你只需要将代码中的 (x1, y1) 到 (x8, y8) 替换成对应的坐标即可。

相关推荐

最新推荐

recommend-type

python读取并定位excel数据坐标系详解

主要使用的库是`xlrd`,这是一个用于读取旧版Microsoft Excel文件的Python库,而`matplotlib.pyplot`和`numpy`则用于数据可视化。 首先,确保已安装`xlrd`库。如果没有,可以通过以下步骤安装: 1. 下载`xlrd`库的...
recommend-type

Python中三维坐标空间绘制的实现

在Python编程中,进行三维图形绘制是一个非常有用的技能,特别是在数据分析、科学计算和可视化领域。本文将详细讲解如何在Python中实现三维坐标空间的绘制,包括绘制点、线和面。 首先,我们要引入必要的库,这通常...
recommend-type

python点击鼠标获取坐标(Graphics)

Python的`Graphics`库提供了一个简单的方法来实现这一目标,它是一个用于创建图形和动画的库,特别适合初学者学习。 在给定的代码中,首先引入了`graphics`库,并创建了一个名为`GraphWin`的窗口对象,其大小为666...
recommend-type

python实现根据给定坐标点生成多边形mask的例子

今天小编就为大家分享一篇python实现根据给定坐标点生成多边形mask的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Python绘图Matplotlib之坐标轴及刻度总结

在Python的可视化库Matplotlib中,绘制图形时,坐标轴和刻度的设置是至关重要的,它们能够清晰地展示数据的分布和趋势。本篇文章主要总结了如何使用Matplotlib进行坐标轴与刻度的定制。 首先,我们导入必要的库,...
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。