C语言 pinMode(FpingPin, OUTPUT); digitalWrite(FpingPin, LOW); delayMicroseconds(2); digitalWrite(FpingPin, HIGH); delayMicroseconds(5); digitalWrite(FpingPin, LOW);是什么意思

时间: 2024-03-08 08:45:27 浏览: 20
这是 Arduino 语言中使用的控制引脚的代码,它们的作用是控制一个超声波传感器进行测距。 - `pinMode(FpingPin, OUTPUT);` 这句话设置 FpingPin 引脚为输出模式,以便通过改变引脚电平来控制超声波传感器的工作。 - `digitalWrite(FpingPin, LOW);` 这句话将 FpingPin 引脚设置为低电平,以便让超声波传感器停止工作。 - `delayMicroseconds(2);` 这句话让程序暂停 2 微秒,以便让超声波传感器停止发送信号。 - `digitalWrite(FpingPin, HIGH);` 这句话将 FpingPin 引脚设置为高电平,以便开始发送超声波信号。 - `delayMicroseconds(5);` 这句话让程序暂停 5 微秒,以便让超声波传感器发送完整个信号。 - `digitalWrite(FpingPin, LOW);` 这句话将 FpingPin 引脚设置为低电平,以便停止发送超声波信号。 这些代码的作用是通过控制超声波传感器的工作,发送一定的信号,以便测量物体到传感器的距离。具体的测距过程需要在代码中的其他部分进行实现。
相关问题

const int trigPin = 9; const int echoPin = 10; long duration; int distance; void setup() { pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); Serial.begin(9600); } void loop() { digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); distance = duration * 0.034 / 2; Serial.print("Distance: "); Serial.println(distance); delay(500); }

这段代码实现了使用超声波传感器来测量距离的功能。其中,定义了两个常量trigPin和echoPin,分别代表超声波传感器的触发引脚和回声引脚。在setup函数中,将trigPin设置为输出模式,echoPin设置为输入模式,并通过Serial.begin函数初始化串口通讯。在loop函数中,首先将trigPin引脚设置为LOW,延时2微秒,然后将trigPin引脚设置为HIGH,延时10微秒,最后将trigPin引脚设置为LOW。这一系列操作用于发射超声波信号。接着,使用pulseIn函数读取echoPin引脚的高电平持续时间,即接收到回声的时间。根据声波传播的速度,计算出距离,并将其存储在distance变量中。最后,通过Serial.println函数将距离输出到串口监视器中,并延时500毫秒。循环执行以上操作,实现了实时测量距离的功能。

#define TRIG_PIN 9#define ECHO_PIN 10#define ENA_PIN 5#define IN1_PIN 7#define IN2_PIN 8#define ENB_PIN 6#define IN3_PIN 11#define IN4_PIN 12void setup() { pinMode(TRIG_PIN, OUTPUT); pinMode(ECHO_PIN, INPUT); pinMode(ENA_PIN, OUTPUT); pinMode(IN1_PIN, OUTPUT); pinMode(IN2_PIN, OUTPUT); pinMode(ENB_PIN, OUTPUT); pinMode(IN3_PIN, OUTPUT); pinMode(IN4_PIN, OUTPUT); Serial.begin(9600);}void loop() { long duration, distance; digitalWrite(TRIG_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIG_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIG_PIN, LOW); duration = pulseIn(ECHO_PIN, HIGH); distance = (duration/2) / 29.1; Serial.print(distance); Serial.println("cm"); if (distance < 10) { digitalWrite(IN1_PIN, LOW); digitalWrite(IN2_PIN, HIGH); digitalWrite(IN3_PIN, LOW); digitalWrite(IN4_PIN, HIGH); analogWrite(ENA_PIN, 200); analogWrite(ENB_PIN, 200); } else { digitalWrite(IN1_PIN, HIGH); digitalWrite(IN2_PIN, LOW); digitalWrite(IN3_PIN, HIGH); digitalWrite(IN4_PIN, LOW); analogWrite(ENA_PIN, 200); analogWrite(ENB_PIN, 200); }}

这段代码实现了超声波测距并根据距离信息控制小车的运动,当距离小于10cm时,小车会向右转,否则小车会向前直行。以下是代码的具体解释: 1. 定义引脚 ``` #define TRIG_PIN 9 #define ECHO_PIN 10 #define ENA_PIN 5 #define IN1_PIN 7 #define IN2_PIN 8 #define ENB_PIN 6 #define IN3_PIN 11 #define IN4_PIN 12 ``` 这里定义了超声波模块的控制引脚(TRIG_PIN和ECHO_PIN),以及电机驱动模块的引脚(ENA_PIN、IN1_PIN、IN2_PIN、ENB_PIN、IN3_PIN和IN4_PIN)。 2. 初始化引脚 ``` void setup() { pinMode(TRIG_PIN, OUTPUT); pinMode(ECHO_PIN, INPUT); pinMode(ENA_PIN, OUTPUT); pinMode(IN1_PIN, OUTPUT); pinMode(IN2_PIN, OUTPUT); pinMode(ENB_PIN, OUTPUT); pinMode(IN3_PIN, OUTPUT); pinMode(IN4_PIN, OUTPUT); Serial.begin(9600); } ``` 在setup()函数中,将所有引脚初始化为输入/输出模式,同时启动串口通信,波特率为9600。 3. 测距并控制小车运动 ``` void loop() { long duration, distance; digitalWrite(TRIG_PIN, LOW); delayMicroseconds(2); digitalWrite(TRIG_PIN, HIGH); delayMicroseconds(10); digitalWrite(TRIG_PIN, LOW); duration = pulseIn(ECHO_PIN, HIGH); distance = (duration/2) / 29.1; Serial.print(distance); Serial.println("cm"); if (distance < 10) { digitalWrite(IN1_PIN, LOW); digitalWrite(IN2_PIN, HIGH); digitalWrite(IN3_PIN, LOW); digitalWrite(IN4_PIN, HIGH); analogWrite(ENA_PIN, 200); analogWrite(ENB_PIN, 200); } else { digitalWrite(IN1_PIN, HIGH); digitalWrite(IN2_PIN, LOW); digitalWrite(IN3_PIN, HIGH); digitalWrite(IN4_PIN, LOW); analogWrite(ENA_PIN, 200); analogWrite(ENB_PIN, 200); } } ``` 在loop()函数中,首先通过超声波模块测距,并计算出距离值,然后判断距离是否小于10cm,如果小于10cm,则向右转,否则向前直行。具体控制小车运动的代码如下: ``` if (distance < 10) { digitalWrite(IN1_PIN, LOW); digitalWrite(IN2_PIN, HIGH); digitalWrite(IN3_PIN, LOW); digitalWrite(IN4_PIN, HIGH); analogWrite(ENA_PIN, 200); analogWrite(ENB_PIN, 200); } else { digitalWrite(IN1_PIN, HIGH); digitalWrite(IN2_PIN, LOW); digitalWrite(IN3_PIN, HIGH); digitalWrite(IN4_PIN, LOW); analogWrite(ENA_PIN, 200); analogWrite(ENB_PIN, 200); } ``` 这里使用digitalWrite()函数控制IN1_PIN、IN2_PIN、IN3_PIN和IN4_PIN的电平,从而控制小车电机的正反转。同时,使用analogWrite()函数控制ENA_PIN和ENB_PIN的PWM输出,控制小车电机的转速。

相关推荐

#include <IRremote.h> const int motorPin1 = 9; const int motorPin2 = 10; const int potPin = A0; const int trigPin = 3; const int echoPin = 4; const int ledPin = 5; const int buzzerPin = 6; const int irRecvPin = 7; int motorSpeed = 90; int distance = 0; int buzzerFreq = 0; int speed = 0; // 红外遥控器控制的风扇转速 IRrecv irrecv(irRecvPin); decode_results results; void setup() { Serial.begin(9600); pinMode(motorPin1, OUTPUT); pinMode(motorPin2, OUTPUT); pinMode(potPin, INPUT); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); pinMode(ledPin, OUTPUT); pinMode(buzzerPin, OUTPUT); // 初始化红外遥控器接收器 irrecv.enableIRIn(); } void loop() { int potValue = analogRead(potPin); motorSpeed = map(potValue, 0, 1023, 0, 255); analogWrite(motorPin1, motorSpeed); analogWrite(motorPin2, 0); // 接收红外遥控器的遥控信号,调整风扇转速 if (irrecv.decode(&results)) { if (results.value == 16712445 && speed < 255) { // 按“+”号键 speed = speed + 30; } else if (results.value == 16750695 && speed > 0) { // 按下“-”号键 speed = speed - 30; } irrecv.resume(); } motorSpeed = speed; analogWrite(motorPin1, motorSpeed); analogWrite(motorPin2, 0); digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); int duration = pulseIn(echoPin, HIGH); distance = duration * 0.034 / 2; if (distance < 10) { for (int i = 0; i < 5; i++) { digitalWrite(ledPin, HIGH); buzzerFreq = 2000 + i * 500; tone(buzzerPin, buzzerFreq); delay(100); digitalWrite(ledPin, LOW); noTone(buzzerPin); delay(100); } analogWrite(motorPin1, 0); analogWrite(motorPin2, 0); } else { digitalWrite(ledPin, LOW); noTone(buzzerPin); } Serial.print("distance: "); Serial.print(distance); Serial.print("cm, motor speed: "); Serial.print(motorSpeed); Serial.println(); delay(100); } 代码改错

最新推荐

recommend-type

基于STM32控制遥控车的蓝牙应用程序

基于STM32控制遥控车的蓝牙应用程序
recommend-type

Memcached 1.2.4 版本源码包

粤嵌gec6818开发板项目Memcached是一款高效分布式内存缓存解决方案,专为加速动态应用程序和减轻数据库压力而设计。它诞生于Danga Interactive,旨在增强LiveJournal.com的性能。面对该网站每秒数千次的动态页面请求和超过七百万的用户群,Memcached成功实现了数据库负载的显著减少,优化了资源利用,并确保了更快的数据访问速度。。内容来源于网络分享,如有侵权请联系我删除。另外如果没有积分的同学需要下载,请私信我。
recommend-type

软件项目开发全过程文档资料.zip

软件项目开发全过程文档资料.zip
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】使用Seaborn和Plotly进行数据可视化项目

![【实战演练】使用Seaborn和Plotly进行数据可视化项目](https://ask.qcloudimg.com/http-save/yehe-5669851/lifus0nfda.jpeg) # 1. 数据可视化的基础** 数据可视化是指将数据转换为图形或图表,以帮助人们理解和解释数据。它是一种强大的工具,可以揭示数据中的模式、趋势和异常情况,从而帮助人们做出更好的决策。 数据可视化有许多不同的类型,包括条形图、折线图、散点图和饼图。每种类型都有其独特的优点和缺点,具体选择哪种类型取决于数据类型和要传达的信息。 在创建数据可视化时,重要的是要考虑以下因素: * **受众:**