train(env_name="BipedalWalker-v3", num_episodes=1000, max_episode_len=1000, batch_size=64, hidden_size=128, lr=0.0003, betas=(0.9, 0.999), gamma=0.99, K_epoch=10, eps_clip=0.2)
时间: 2024-02-19 08:00:03 浏览: 131
这段代码看起来像是使用了深度强化学习中的PPO算法对名为BipedalWalker-v3的环境进行训练,其中包括1000个episode,每个episode最多运行1000步,使用64个样本进行每次更新,神经网络的隐藏层大小为128,使用Adam优化器,学习率为0.0003,beta参数为(0.9, 0.999),折扣因子为0.99,每K_epoch次更新进行一次PPO的优化,剪切范围为0.2。
相关问题
lr = 2e-3 num_episodes = 500 hidden_dim = 128 gamma = 0.98 epsilon = 0.01 target_update = 10 buffer_size = 10000 minimal_size = 500 batch_size = 64 device = torch.device("cuda") if torch.cuda.is_available() else torch.device( "cpu") env_name = 'CartPole-v1' env = gym.make(env_name) random.seed(0) np.random.seed(0) #env.seed(0) torch.manual_seed(0) replay_buffer = ReplayBuffer(buffer_size) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = DQN(state_dim, hidden_dim, action_dim, lr, gamma, epsilon, target_update, device) return_list = [] episode_return = 0 state = env.reset()[0] done = False while not done: action = agent.take_action(state) next_state, reward, done, _, _ = env.step(action) replay_buffer.add(state, action, reward, next_state, done) state = next_state episode_return += reward # 当buffer数据的数量超过一定值后,才进行Q网络训练 if replay_buffer.size() > minimal_size: b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size) transition_dict = { 'states': b_s, 'actions': b_a, 'next_states': b_ns, 'rewards': b_r, 'dones': b_d } agent.update(transition_dict) if agent.count >=200: #运行200步后强行停止 agent.count = 0 break return_list.append(episode_return) episodes_list = list(range(len(return_list))) plt.plot(episodes_list, return_list) plt.xlabel('Episodes') plt.ylabel('Returns') plt.title('DQN on {}'.format(env_name)) plt.show()对上述代码的每一段进行注释,并将其在段落中的作用注释出来
```
lr = 2e-3 # 学习率
num_episodes = 500 # 训练的总Episode数
hidden_dim = 128 # 隐藏层维度
gamma = 0.98 # 折扣因子
epsilon = 0.01 # ε贪心策略中的ε值
target_update = 10 # 目标网络更新频率
buffer_size = 10000 # 经验回放缓冲区的最大容量
minimal_size = 500 # 经验回放缓冲区的最小容量,达到此容量后才开始训练
batch_size = 64 # 每次训练时的样本数量
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # 选择CPU或GPU作为运行设备
env_name = 'CartPole-v1' # 使用的环境名称
env = gym.make(env_name) # 创建CartPole-v1环境
random.seed(0) # 随机数生成器的种子
np.random.seed(0) # 随机数生成器的种子
torch.manual_seed(0) # 随机数生成器的种子
replay_buffer = ReplayBuffer(buffer_size) # 创建经验回放缓冲区
state_dim = env.observation_space.shape[0] # 状态空间维度
action_dim = env.action_space.n # 动作空间维度(离散动作)
agent = DQN(state_dim, hidden_dim, action_dim, lr, gamma, epsilon, target_update, device) # 创建DQN智能体
return_list = [] # 用于存储每个Episode的回报
episode_return = 0 # 每个Episode的初始回报为0
state = env.reset()[0] # 环境的初始状态
done = False # 初始状态下没有结束
```
以上代码是对程序中所需的参数进行设置和初始化,包括学习率、训练的总Episode数、隐藏层维度、折扣因子、ε贪心策略中的ε值、目标网络更新频率、经验回放缓冲区的最大容量、经验回放缓冲区的最小容量、每次训练时的样本数量、运行设备、使用的环境名称等等。同时,创建了经验回放缓冲区、DQN智能体和用于存储每个Episode的回报的列表,以及初始化了环境状态和结束标志。
```
while not done:
action = agent.take_action(state) # 智能体根据当前状态选择动作
next_state, reward, done, _, _ = env.step(action) # 环境执行动作,观测下一个状态、奖励和结束标志
replay_buffer.add(state, action, reward, next_state, done) # 将当前状态、动作、奖励、下一个状态和结束标志添加到经验回放缓冲区中
state = next_state # 更新状态
episode_return += reward # 累加当前Episode的回报
```
以上代码是智能体与环境的交互过程,智能体根据当前状态选择动作,环境执行动作并返回下一个状态、奖励和结束标志,将当前状态、动作、奖励、下一个状态和结束标志添加到经验回放缓冲区中,更新状态,并累加当前Episode的回报。
```
if replay_buffer.size() > minimal_size: # 当经验回放缓冲区的数据量达到最小容量时,开始训练
b_s, b_a, b_r, b_ns, b_d = replay_buffer.sample(batch_size) # 从经验回放缓冲区中采样样本
transition_dict = {
'states': b_s,
'actions': b_a,
'next_states': b_ns,
'rewards': b_r,
'dones': b_d
}
agent.update(transition_dict) # 智能体根据样本更新Q网络
if agent.count >=200: # 运行200步后强行停止
agent.count = 0
break
```
以上代码是经验回放和Q网络更新过程,当经验回放缓冲区的数据量达到最小容量时,从经验回放缓冲区中采样样本,智能体根据样本更新Q网络。同时,当运行步数超过200步时,强制停止训练。
```
return_list.append(episode_return) # 将当前Episode的回报添加到回报列表中
```
以上代码是将当前Episode的回报添加到回报列表中。
```
episodes_list = list(range(len(return_list))) # 横坐标为Episode序号
plt.plot(episodes_list, return_list) # 绘制Episode回报随序号的变化曲线
plt.xlabel('Episodes')
plt.ylabel('Returns')
plt.title('DQN on {}'.format(env_name))
plt.show()
```
以上代码是绘制Episode回报随序号的变化曲线。
给出基于pytorch强化学习SAC算法对Swimmer-v3训练输出的policy.pth、actor.pth和critic.pth模型的代码,写出如何转化成tensorflow lite,并部署到esp32中
这是一个比较复杂的问题,需要分为几个步骤来完成。
首先,我们需要使用PyTorch实现SAC算法来训练Swimmer-v3环境。这个过程可以参考OpenAI Gym官方文档,具体实现代码如下:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
import numpy as np
import random
# 定义策略网络
class Policy(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(Policy, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, state):
x = torch.relu(self.fc1(state))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义Q网络
class QNet(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=256):
super(QNet, self).__init__()
self.fc1 = nn.Linear(state_dim+action_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义重要性采样函数
def logprob(mu, log_std, action):
var = torch.exp(2*log_std)
logp = -0.5 * torch.sum(torch.pow(action-mu, 2)/var + 2*log_std + np.log(2*np.pi), dim=1)
return logp
# 定义SAC算法
class SAC:
def __init__(self, env, state_dim, action_dim, hidden_dim=256, lr=0.001, gamma=0.99, tau=0.01, alpha=0.2, buffer_size=1000000, batch_size=256, target_entropy=None):
self.env = env
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_dim = hidden_dim
self.lr = lr
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.buffer_size = buffer_size
self.batch_size = batch_size
self.target_entropy = -action_dim if target_entropy is None else target_entropy
self.policy = Policy(state_dim, action_dim, hidden_dim).to(device)
self.policy_optimizer = optim.Adam(self.policy.parameters(), lr=lr)
self.q1 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q2 = QNet(state_dim, action_dim, hidden_dim).to(device)
self.q1_optimizer = optim.Adam(self.q1.parameters(), lr=lr)
self.q2_optimizer = optim.Adam(self.q2.parameters(), lr=lr)
self.value = QNet(state_dim, action_dim, hidden_dim).to(device)
self.value_optimizer = optim.Adam(self.value.parameters(), lr=lr)
self.memory = []
self.steps = 0
self.episodes = 0
def select_action(self, state, test=False):
state = torch.FloatTensor(state).to(device)
with torch.no_grad():
mu = self.policy(state)
log_std = torch.zeros_like(mu)
action = mu + torch.exp(log_std) * torch.randn_like(mu)
action = action.cpu().numpy()
return action if test else np.clip(action, self.env.action_space.low, self.env.action_space.high)
def update(self):
if len(self.memory) < self.batch_size:
return
state, action, reward, next_state, done = self.sample()
state = torch.FloatTensor(state).to(device)
action = torch.FloatTensor(action).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device)
next_state = torch.FloatTensor(next_state).to(device)
done = torch.FloatTensor(done).unsqueeze(-1).to(device)
with torch.no_grad():
next_action, next_log_prob = self.policy.sample(next_state)
next_q1 = self.q1(next_state, next_action)
next_q2 = self.q2(next_state, next_action)
next_q = torch.min(next_q1, next_q2) - self.alpha * next_log_prob
target_q = reward + (1-done) * self.gamma * next_q
q1 = self.q1(state, action)
q2 = self.q2(state, action)
value = self.value(state)
q1_loss = nn.MSELoss()(q1, target_q.detach())
q2_loss = nn.MSELoss()(q2, target_q.detach())
value_loss = nn.MSELoss()(value, torch.min(q1, q2).detach())
self.q1_optimizer.zero_grad()
q1_loss.backward()
self.q1_optimizer.step()
self.q2_optimizer.zero_grad()
q2_loss.backward()
self.q2_optimizer.step()
self.value_optimizer.zero_grad()
value_loss.backward()
self.value_optimizer.step()
with torch.no_grad():
new_action, new_log_prob = self.policy.sample(state)
q1_new = self.q1(state, new_action)
q2_new = self.q2(state, new_action)
q_new = torch.min(q1_new, q2_new) - self.alpha * new_log_prob
policy_loss = (self.alpha * new_log_prob - q_new).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
self.alpha = max(0.01, self.alpha - 1e-4)
for target_param, param in zip(self.value.parameters(), self.q1.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for target_param, param in zip(self.value.parameters(), self.q2.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
self.steps += self.batch_size
if done.any():
self.episodes += done.sum().item()
def sample(self):
indices = np.random.randint(0, len(self.memory), size=self.batch_size)
state, action, reward, next_state, done = zip(*[self.memory[idx] for idx in indices])
return state, action, reward, next_state, done
def run(self, episodes=1000, render=False):
for episode in range(episodes):
state = self.env.reset()
episode_reward = 0
done = False
while not done:
if render:
self.env.render()
action = self.select_action(state)
next_state, reward, done, _ = self.env.step(action)
self.memory.append((state, action, reward, next_state, done))
self.update()
state = next_state
episode_reward += reward
print(f"Episode {episode}, Reward {episode_reward}")
self.save_model()
def save_model(self, path="./"):
torch.save(self.policy.state_dict(), path + "policy.pth")
torch.save(self.q1.state_dict(), path + "q1.pth")
torch.save(self.q2.state_dict(), path + "q2.pth")
def load_model(self, path="./"):
self.policy.load_state_dict(torch.load(path + "policy.pth"))
self.q1.load_state_dict(torch.load(path + "q1.pth"))
self.q2.load_state_dict(torch.load(path + "q2.pth"))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = gym.make("Swimmer-v3")
sac = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
sac.run()
```
接下来,我们需要将训练好的模型导出为TensorFlow Lite模型。为此,我们需要使用ONNX将PyTorch模型转换为ONNX格式,然后使用TensorFlow Lite Converter将ONNX模型转换为TensorFlow Lite模型。具体实现代码如下:
```python
import onnx
from onnx_tf.backend import prepare
import tensorflow as tf
from tensorflow import lite
# 将PyTorch模型转换为ONNX格式
model = SAC(env, env.observation_space.shape[0], env.action_space.shape[0])
model.load_model()
dummy_input = torch.randn(1, env.observation_space.shape[0])
torch.onnx.export(model.policy, dummy_input, "policy.onnx", export_params=True)
# 将ONNX模型转换为TensorFlow Lite模型
onnx_model = onnx.load("policy.onnx")
tf_model = prepare(onnx_model)
tflite_model = lite.TFLiteConverter.from_session(tf_model.session).convert()
# 保存TensorFlow Lite模型
with open("policy.tflite", "wb") as f:
f.write(tflite_model)
```
最后,我们需要将TensorFlow Lite模型部署到ESP32中。首先,需要安装ESP-IDF开发环境。然后,我们可以使用ESP32的TensorFlow Lite for Microcontrollers库来加载和运行模型。具体实现代码如下:
```c
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
// 定义模型文件名
#define MODEL_FILENAME "/path/to/policy.tflite"
// 定义输入输出张量的数量和形状
#define INPUT_TENSOR_NUM 1
#define INPUT_TENSOR_HEIGHT 1
#define INPUT_TENSOR_WIDTH 8
#define OUTPUT_TENSOR_NUM 1
#define OUTPUT_TENSOR_HEIGHT 1
#define OUTPUT_TENSOR_WIDTH 2
int main()
{
// 加载模型
const tflite::Model* model = tflite::GetModel(MODEL_FILENAME);
if (model == nullptr) {
return -1;
}
// 创建解释器和张量分配器
static tflite::MicroInterpreter interpreter(model, tflite::AllOpsResolver(), nullptr, nullptr);
interpreter.AllocateTensors();
// 获取输入输出张量
TfLiteTensor* input = interpreter.input(0);
input->dims->data[0] = INPUT_TENSOR_HEIGHT;
input->dims->data[1] = INPUT_TENSOR_WIDTH;
input->type = kTfLiteFloat32;
TfLiteTensor* output = interpreter.output(0);
output->dims->data[0] = OUTPUT_TENSOR_HEIGHT;
output->dims->data[1] = OUTPUT_TENSOR_WIDTH;
output->type = kTfLiteFloat32;
// 运行模型
float input_data[INPUT_TENSOR_HEIGHT][INPUT_TENSOR_WIDTH] = {0.0};
float output_data[OUTPUT_TENSOR_HEIGHT][OUTPUT_TENSOR_WIDTH] = {0.0};
input->data.f = reinterpret_cast<float*>(input_data);
output->data.f = reinterpret_cast<float*>(output_data);
interpreter.Invoke();
// 打印输出结果
printf("Output: %f %f\n", output_data[0][0], output_data[0][1]);
return 0;
}
```
需要注意的是,ESP32的TensorFlow Lite for Microcontrollers库只支持一小部分的TensorFlow Lite操作,因此在将模型转换为TensorFlow Lite格式时需要使用支持的操作。如果模型中包含不支持的操作,可以尝试使用TensorFlow Lite for Microcontrollers的自定义操作接口来实现。
阅读全文