df_temp.dropna()

时间: 2024-04-23 09:25:34 浏览: 56
这是一行Python代码,用于删除数据框df_temp中含有缺失值的行。具体来说,它会删除df_temp中任何一行中含有缺失值的数据,并返回一个新的不含缺失值的数据框。如果不想删除缺失值所在的列,可以使用参数axis=1。例如,df_temp.dropna(axis=1)将删除df_temp中任何一列中含有缺失值的数据。
相关问题

请问以下代码有何问题? try: db = pymysql.Connect(host='10.32.158.162', port=3306, user='dscuser', passwd='dscuser_123', db='COST') if y == "岗位费用": df_upload = pd.melt(df_upload, id_vars=['project', 'role'], value_vars=["2023", "2024", "2025", "2026", "2027", "2028", "2029", "上一版"], var_name='year', value_name='value') elif y == "年度项目月份工时": df_upload = pd.melt(df_upload, id_vars=['Project', 'Function'], value_vars=temp, var_name='year', value_name='value') df_upload = df_upload.dropna() df_upload = df_upload.drop_duplicates() df_upload = df_upload[(df_upload['value'] != 0) & (df_upload['value'].notna())] else: sql = "delete from COST.{} where project = '{}';".format(upload_name, project_name) cursor = db.cursor() cursor.execute(sql) # db.commit() # db.close() col_names = list(df_upload) for col in col_names: df_upload[col] = df_upload[col].astype('string', copy=False) df_upload.to_sql(upload_name, engine, if_exists="append", index=False) else: # db.commit() # db.close() error = error msg = "" except Exception as e: db.rollback() msg = str(e)[0:100] else: db.commit() finally: db.close()

这段代码存在一些问题: 1. 引入的库`pandas`和`pymysql`没有看到在哪里导入,需要在代码开头进行导入。 2. 在执行SQL语句时,没有使用参数化查询,容易出现SQL注入漏洞。应该使用参数化查询,例如使用`cursor.execute(sql, params)`方法。其中`params`是一个元组或字典类型,用于替换SQL语句中的参数。 3. 在`try`语句块中,如果`y`不等于"岗位费用"和"年度项目月份工时",则会执行`else`语句块,但是该语句块中没有对`df_upload`进行处理,会导致后面的代码出现错误。 4. 在`else`语句块中,如果使用`cursor`对象进行数据库操作,则应该在操作完成后调用`cursor.close()`方法释放资源。 5. 在`except`语句块中,`error = error`这行代码没有实际作用,应该删除。 下面是修改后的代码: ``` import pandas as pd import pymysql try: db = pymysql.Connect(host='10.32.158.162', port=3306, user='dscuser', passwd='dscuser_123', db='COST') if y == "岗位费用": df_upload = pd.melt(df_upload, id_vars=['project', 'role'], value_vars=["2023", "2024", "2025", "2026", "2027", "2028", "2029", "上一版"], var_name='year', value_name='value') elif y == "年度项目月份工时": df_upload = pd.melt(df_upload, id_vars=['Project', 'Function'], value_vars=temp, var_name='year', value_name='value') df_upload = df_upload.dropna() df_upload = df_upload.drop_duplicates() df_upload = df_upload[(df_upload['value'] != 0) & (df_upload['value'].notna())] else: sql = "delete from COST.{} where project = %s;".format(upload_name) cursor = db.cursor() cursor.execute(sql, (project_name,)) cursor.close() col_names = list(df_upload) for col in col_names: df_upload[col] = df_upload[col].astype('string', copy=False) df_upload.to_sql(upload_name, engine, if_exists="append", index=False) except Exception as e: db.rollback() msg = str(e)[0:100] else: db.commit() finally: db.close() ``` 在上面的代码中,我们首先导入了`pandas`和`pymysql`库。在`try`语句块中,我们首先创建了一个数据库连接`db`,然后根据不同的条件对`df_upload`进行处理。如果`y`等于"岗位费用",则使用`pd.melt()`方法进行数据重构。如果`y`等于"年度项目月份工时",则使用`pd.melt()`方法和`temp`变量进行数据重构。然后对数据进行清洗,去除空值和重复值,以及`value`列中的0值和空值。 如果`y`不等于"岗位费用"和"年度项目月份工时",则执行`else`语句块。在该语句块中,我们使用参数化查询的方式执行SQL语句,避免了SQL注入漏洞。然后将`df_upload`中的数据类型转换为字符串类型,并使用`df_upload.to_sql()`方法将数据写入数据库。 在`except`语句块中,如果出现异常,则会回滚事务并输出错误信息。在`else`语句块中,如果没有出现异常,则会提交事务。最后在`finally`语句块中,关闭数据库连接。

(1)用 pandas 库读取 PRSA data 2010.1.1-2014.12.31. csv 文件,查看前3行、后2行。(2)删除列 DEWP 、 TEMP 、 PRES 、 cbwd 、 Iws 、 Is 、 Ir ,并将剩余列用 pandas 数据预处理模块将缺失值丢弃处理,导出到新的 csv 文件pm25_ data _2010.1.1-2014.12.31. csv 。 (3)利用 pandas 库读取新的数据集pm25_ data _2010.1.1-2014.12.31. csv ,并选择字段pm2.5大于300的所有数据集,导出为文本文件pm25_ hazardous _ data _2010.1.1-2014.12.31.txt,要求数据之间用逗号分隔,每行末尾包含换行符。 (4)读取文本文件pm25_ hazardous _ data _2010.1.1-2014.12.31. txt 并转存到 Excel 文件pm25hazadous2010.1.1-2014.12.31. xsx 。(5)重新读取文本文件读取文本文件pm25 hazardous data 2010.1.1-2014.12.31. txt ,示。要求包括图例、图标题, x 、 y 轴均显示刻度值,柱状图填充颜色分别为红色、绿色、分别统计出现最多的 month 、 day 、 hour ,并将 month 、 day 、 hour 的出现频次用柱状图显pm25_ hazardous _ month _ day _ hour . png . 蓝色;并将结果保存为 png 图片保存,分辨率为400 dpi , png 图片命名分别为pm25_hazardous_month_day_hour.png

好的,以下是代码实现: ```python # (1) 读取 PRSA data 2010.1.1-2014.12.31. csv 文件,查看前3行、后2行 import pandas as pd df = pd.read_csv('PRSA_data_2010.1.1-2014.12.31.csv') print(df.head(3)) # 查看前3行 print(df.tail(2)) # 查看后2行 # (2) 删除列 DEWP、TEMP、PRES、cbwd、Iws、Is、Ir,丢弃缺失值并导出到新的 csv 文件 df.drop(columns=['DEWP', 'TEMP', 'PRES', 'cbwd', 'Iws', 'Is', 'Ir'], inplace=True) df.dropna(inplace=True) df.to_csv('pm25_data_2010.1.1-2014.12.31.csv', index=False) # (3) 选择 pm2.5 大于 300 的数据集并导出到文本文件 df = pd.read_csv('pm25_data_2010.1.1-2014.12.31.csv') df_hazardous = df[df['pm2.5'] > 300] df_hazardous.to_csv('pm25_hazardous_data_2010.1.1-2014.12.31.txt', index=False, sep=',', line_terminator='\n') # (4) 读取文本文件并转存到 Excel 文件 df_hazardous = pd.read_csv('pm25_hazardous_data_2010.1.1-2014.12.31.txt', sep=',') df_hazardous.to_excel('pm25hazardous2010.1.1-2014.12.31.xlsx', index=False) # (5) 绘制柱状图并保存为 png 文件 import matplotlib.pyplot as plt df_hazardous = pd.read_csv('pm25_hazardous_data_2010.1.1-2014.12.31.txt', sep=',') month_counts = df_hazardous['month'].value_counts() day_counts = df_hazardous['day'].value_counts() hour_counts = df_hazardous['hour'].value_counts() fig, axs = plt.subplots(3, 1, figsize=(8, 12), sharex=True) fig.suptitle('PM2.5 Hazardous Data 2010.1.1-2014.12.31', fontsize=16) axs[0].bar(month_counts.index, month_counts.values, color='r') axs[0].set_ylabel('Count') axs[0].set_title('Month') axs[1].bar(day_counts.index, day_counts.values, color='g') axs[1].set_ylabel('Count') axs[1].set_title('Day') axs[2].bar(hour_counts.index, hour_counts.values, color='b') axs[2].set_xlabel('Hour') axs[2].set_ylabel('Count') axs[2].set_title('Hour') plt.xticks(range(1, 25)) plt.savefig('pm25_hazardous_month_day_hour.png', dpi=400) ``` 注意,以上代码中的文件路径需要根据实际情况修改。

相关推荐

优化代码 def module_split(self, save_on=True): """ split module data :param save_on: :return: """ for ms in range(self.mod_num): m_sn = self.module_list[ms] module_path = os.path.join(self.result_path_down, m_sn) cols_obj = ChuNengPackMustCols(ms, self.mod_cell_num, self.mod_cell_num) # 传入当前的module序号(如0,1,2,3,4),电芯电压个数,温度NTC个数。 aim_cols = [i for i in cols_obj.total_cols if i in self.df.columns] print(m_sn, aim_cols) self.modules[m_sn] = rename_cols_normal(self.df.loc[:, aim_cols], ms, self.mod_cell_num) print("after change cols name:", ms, m_sn, self.modules[m_sn].columns.tolist()) self.modules[m_sn].dropna(axis=0, how='any', subset=['soc'], inplace=True) volt_col = [f'volt{i}' for i in range(self.mod_cell_num)] temp_col = [f'temp{i}' for i in range(self.mod_cell_num)] self.modules[m_sn].dropna(axis=0, how='any', subset=volt_col, inplace=True) self.modules[m_sn] = stat(self.modules[m_sn], volt_col, temp_col) self.modules[m_sn].reset_index(drop=True, inplace=True) print(self.modules[m_sn]['discharge_ah'].iloc[-1]) self.module_cap[m_sn] = [self.modules[m_sn]['discharge_ah'].iloc[-1], self.modules[m_sn]['charge_ah'].iloc[-1], self.modules[m_sn]['soh'].iloc[-1]] self.module_peaks[m_sn] = list(quick_report(self.modules[m_sn], module_path, f'quick_report_{m_sn[:8]}')) # check soc status mod_soc = self.modules[m_sn]['soc'] self.module_soc_sig[m_sn] = [np.nanmedian(mod_soc), np.max(mod_soc), np.min(mod_soc)] if save_on: single_variables_plot(mod_soc, module_path, f'{m_sn[:8]}_soc_distribution_box.png', 'box', 'SOC') single_variables_plot(mod_soc, module_path, f'{m_sn[:8]}_soc_distribution_violin.png', 'violin', 'SOC')

def pic(df, name): import matplotlib.pyplot as plt plt.figure(figsize=(36, 12)) plt.rcParams["font.sans-serif"] = ["SimHei"] plt.rcParams["axes.unicode_minus"] = False grid = plt.GridSpec(4, 1, wspace=0, hspace=0) df['wnacwindspeed'].dropna() df['wgengenactivepw'].dropna() df.rename(columns={'temp_act': '检测风机', 'temp_avg': '平均风机', 'wnacwindspeed': '平均风速', 'wgengenactivepw': '有功功率'}, inplace=True) if not df.empty: fig = plt.figure(figsize=(19.2, 10.8), dpi=100) # 温度预警图 plt.subplot(211) plt.scatter(df['datatime'], df['检测风机'], color='r', label='检测风机值',s=1) plt.scatter(df['datatime'], df['平均风机'], color='g', label='健康参考值',s=1) plt.legend(fontsize=10, loc='best') plt.title(name, size=28) plt.grid() # 风速-功率曲线图 ax1 = fig.add_subplot(212) lns1 = ax1.plot(df['datatime'], df['平均风速'], color='#6495ED', label='风速',lw=1) ax2 = ax1.twinx() lns2 = ax2.plot(df['datatime'], df['有功功率'], color='#DAA520', label='功率',lw=1) lns = lns1 + lns2 labs = [l.get_label() for l in lns] ax1.legend(lns, labs, loc=0) ax1.grid() ax1.set_xlabel('datatime') ax1.set_ylabel('Wind Speed (m/s)', color='#6495ED', size=20) ax2.set_ylabel('Power (kW)', color='#DAA520', size=20) now = datetime.datetime.now() time_str = now.strftime("%Y-%m-%d") path = 'D:/LYTCO/result/' + time_str if not os.path.exists(path): os.makedirs(path) name = name.replace('/', '-') name = path + '/' + name + '.png' fig.tight_layout() plt.savefig(name, bbox_inches='tight') plt.close()

最新推荐

recommend-type

Java语言编程基础及Web开发入门教程:Java 是一种广泛使用的面向对象编程语言,以其平台无关性和安全性著称 Java 不仅

javascript:Java 是一种广泛使用的面向对象编程语言,以其平台无关性和安全性著称。Java 不仅适用于桌面应用程序开发,还特别适合 Web 开发,包括服务器端开发、Android 应用开发等。下面是一个简要的 Java 编程基础和 Web 开发入门指南。 Java 编程基础 1. 环境搭建 首先需要安装 Java 开发工具包 JDK 和一个集成开发环境(IDE),比如 Eclipse 或 IntelliJ IDEA。 2. 第一个 Java 程序 创建一个简单的 Java 程序来熟悉 Java 的基本语法结构。 java 深色版本 1public class HelloWorld {2 public static void main(String[] args) {3 System.out.println("Hello, World!");4 }5} 3. 数据类型 Java 支持多种数据类型,包括基本类型(如 int, double)和引用类型(如 String, 类)。 4. 控制结构 学习条件语句(if, switch)、循环语句(for,
recommend-type

C++多态实现机制详解:虚函数与早期绑定

C++多态性实现机制是面向对象编程的重要特性,它允许在运行时根据对象的实际类型动态地调用相应的方法。本文主要关注于虚函数的使用,这是实现多态的关键技术之一。虚函数在基类中声明并被标记为virtual,当派生类重写该函数时,基类的指针或引用可以正确地调用派生类的版本。 在例1-1中,尽管定义了fish类,但基类animal中的breathe()方法并未被声明为虚函数。因此,当我们创建一个fish对象fh,并将其地址赋值给animal类型的指针pAn时,编译器在编译阶段就已经确定了函数的调用地址,这就是早期绑定。这意味着pAn指向的是animal类型的对象,所以调用的是animal类的breathe()函数,而不是fish类的版本,输出结果自然为"animalbreathe"。 要实现多态性,需要在基类中将至少一个成员函数声明为虚函数。这样,即使通过基类指针调用,也能根据实际对象的类型动态调用相应的重载版本。在C++中,使用关键字virtual来声明虚函数,如`virtual void breathe();`。如果在派生类中重写了这个函数,例如在fish类中定义`virtual void breathe() { cout << "fishbubble" << endl; }`,那么即使使用animal类型的指针,也能调用到fish类的breathe()方法。 内存模型的角度来看,当一个派生类对象被赋值给基类指针时,基类指针只存储了派生类对象的基类部分的地址。因此,即使进行类型转换,也只是访问基类的公共成员,而不会访问派生类特有的私有或保护成员。这就解释了为什么即使指针指向的是fish对象,调用的还是animal的breathe()函数。 总结来说,C++多态性是通过虚函数和早期/晚期绑定来实现的。理解这两个概念对于编写可扩展和灵活的代码至关重要。在设计程序时,合理使用多态能够提高代码的复用性和可维护性,使得程序结构更加模块化。通过虚函数,可以在不改变接口的情况下,让基类指针动态调用不同类型的子类对象上的同名方法,从而展现C++强大的继承和封装特性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

matlab处理nc文件,nc文件是1979-2020年的全球降雨数据,获取一个省份区域内的日降雨量,代码怎么写

在MATLAB中处理`.nc`(NetCDF)文件通常需要使用`netcdf`函数库,它是一个用于读写多种科学数据格式的工具。对于全球降雨数据,你可以按照以下步骤编写代码: 1. 安装必要的库(如果还没有安装): ```matlab % 如果你尚未安装 netcdf 包,可以安装如下: if ~exist('netcdf', 'dir') disp('Installing the NetCDF toolbox...') addpath(genpath(fullfile(matlabroot,'toolbox','nco'))); end ``` 2. 加载nc文件并查看其结
recommend-type

Java多线程与异常处理详解

"Java多线程与进程调度是编程领域中的重要概念,尤其是在Java语言中。多线程允许程序同时执行多个任务,提高系统的效率和响应速度。Java通过Thread类和相关的同步原语支持多线程编程,而进程则是程序的一次执行实例,拥有独立的数据区域。线程作为进程内的执行单元,共享同一地址空间,减少了通信成本。多线程在单CPU系统中通过时间片轮转实现逻辑上的并发执行,而在多CPU系统中则能实现真正的并行。 在Java中,异常处理是保证程序健壮性的重要机制。异常是程序运行时发生的错误,通过捕获和处理异常,可以确保程序在遇到问题时能够优雅地恢复或终止,而不是崩溃。Java的异常处理机制使用try-catch-finally语句块来捕获和处理异常,提供了更高级的异常类型以及finally块确保关键代码的执行。 Jdb是Java的调试工具,特别适合调试多线程程序。它允许开发者设置断点,查看变量状态,单步执行代码,从而帮助定位和解决问题。在多线程环境中,理解线程的生命周期和状态(如新建、运行、阻塞、等待、结束)以及如何控制线程的执行顺序和同步是至关重要的。 Java的多线程支持包括Thread类和Runnable接口。通过继承Thread类或者实现Runnable接口,用户可以创建自己的线程。线程间同步是多线程编程中的一大挑战,Java提供了synchronized关键字、wait()、notify()和notifyAll()等方法来解决这个问题,防止数据竞争和死锁的发生。 在实际应用中,多线程常用于网络编程、数据库访问、GUI应用程序(如Swing或JavaFX)的事件处理、服务器端的并发处理等场景。例如,一个Web服务器可能需要同时处理多个客户端请求,这时使用多线程可以显著提升性能。此外,多线程在动画制作、游戏开发、多媒体应用等领域也发挥着重要作用,因为它允许同时处理渲染、计算和用户交互等多个任务。 Java的多线程与进程调度是构建高效、健壮应用的基础,而异常处理则提升了程序的稳定性。通过深入理解和熟练运用这些概念,开发者可以创建出更加灵活和可靠的软件系统。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha
recommend-type

帮我用PHP写一个登录界面

当然可以,创建一个简单的PHP登录页面的基本步骤如下: ```php <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8"> <title>登录页面</title> </head> <body> <h2>用户登录</h2> <form method="post" action="login.php"> <label for="username">用户名:</label><br> <input type="text" id="username" name="us
recommend-type

校园导游系统:无向图实现最短路径探索

"校园导游系统是一个简单的程序设计实习项目,旨在用无向图表示校园的景点平面图,提供景点介绍和最短路径计算功能。该项目适用于学习数据结构和图算法,通过Floyd算法求解最短路径,并进行功能测试。" 这篇摘要提及的知识点包括: 1. **无向图**:在本系统中,无向图用于表示校园景点之间的关系,每个顶点代表一个景点,边表示景点之间的连接。无向图的特点是图中的边没有方向,任意两个顶点间可以互相到达。 2. **数据结构**:系统可能使用邻接矩阵来存储图数据,如`cost[n][n]`和`shortest[n][n]`分别表示边的权重和两点间的最短距离。`path[n][n]`则用于记录最短路径中经过的景点。 3. **景点介绍**:`introduce()`函数用于提供景点的相关信息,包括编号、名称和简介,这可能涉及到字符串处理和文件读取。 4. **最短路径算法**:通过`shortestdistance()`函数实现,可能是Dijkstra算法或Floyd-Warshall算法。这里特别提到了`floyed()`函数,这通常是Floyd算法的实现,用于计算所有顶点对之间的最短路径。 5. **Floyd-Warshall算法**:这是一种解决所有顶点对最短路径的动态规划算法。它通过迭代逐步更新每对顶点之间的最短路径,直到找到最终答案。 6. **函数说明**:`display(int i, int j)`用于输出从顶点i到顶点j的最短路径。这个函数可能需要解析`path[n][n]`数组,并将路径以用户可读的形式展示出来。 7. **测试用例**:系统进行了功能测试,包括景点介绍功能和最短路径计算功能的测试,以验证程序的正确性。测试用例包括输入和预期的输出,帮助识别程序的潜在问题。 8. **源代码**:源代码中包含了C语言的基本结构,如`#include`预处理器指令,`#define`定义常量,以及函数声明和定义。值得注意的是,`main()`函数是程序的入口点,而其他如`introduce()`, `shortestdistance()`, `floyed()`, 和 `display(int i, int j)` 是实现特定功能的子程序。 9. **全局变量**:`cost[n][n]`, `shortest[n][n]` 和 `path[n][n]`是全局变量,它们在整个程序范围内都可见,方便不同函数共享数据。 10. **C语言库**:`<stdio.h>`用于基本输入输出,`<process.h>`在这里可能用于进程控制,但请注意,在标准C库中并没有这个头文件,这可能是特定平台或编译器的扩展。 这个简单的校园导游系统是一个很好的教学案例,它涵盖了图论、数据结构、算法和软件测试等多个核心的计算机科学概念。对于学习者来说,通过实际操作这样的项目,可以加深对这些知识的理解和应用能力。