def pic(df, name): import matplotlib.pyplot as plt plt.figure(figsize=(36, 12)) plt.rcParams["font.sans-serif"] = ["SimHei"] plt.rcParams["axes.unicode_minus"] = False grid = plt.GridSpec(4, 1, wspace=0, hspace=0) df['wnacwindspeed'].dropna() df['wgengenactivepw'].dropna() df.rename(columns={'temp_act': '检测风机', 'temp_avg': '平均风机', 'wnacwindspeed': '平均风速', 'wgengenactivepw': '有功功率'}, inplace=True) if not df.empty: fig = plt.figure(figsize=(19.2, 10.8), dpi=100) # 温度预警图 plt.subplot(211) plt.scatter(df['datatime'], df['检测风机'], color='r', label='检测风机值',s=1) plt.scatter(df['datatime'], df['平均风机'], color='g', label='健康参考值',s=1) plt.legend(fontsize=10, loc='best') plt.title(name, size=28) plt.grid() # 风速-功率曲线图 ax1 = fig.add_subplot(212) lns1 = ax1.plot(df['datatime'], df['平均风速'], color='#6495ED', label='风速',lw=1) ax2 = ax1.twinx() lns2 = ax2.plot(df['datatime'], df['有功功率'], color='#DAA520', label='功率',lw=1) lns = lns1 + lns2 labs = [l.get_label() for l in lns] ax1.legend(lns, labs, loc=0) ax1.grid() ax1.set_xlabel('datatime') ax1.set_ylabel('Wind Speed (m/s)', color='#6495ED', size=20) ax2.set_ylabel('Power (kW)', color='#DAA520', size=20) now = datetime.datetime.now() time_str = now.strftime("%Y-%m-%d") path = 'D:/LYTCO/result/' + time_str if not os.path.exists(path): os.makedirs(path) name = name.replace('/', '-') name = path + '/' + name + '.png' fig.tight_layout() plt.savefig(name, bbox_inches='tight') plt.close()
时间: 2024-01-24 10:03:07 浏览: 117
matlab设置画布大小代码-pyplot-tutorial:代码示例了解用于绘制图形的matplotlib.pyplot接口
这段代码的作用是绘制一个包含两个子图的图片,第一个子图是温度预警图,第二个子图是风速-功率曲线图。在温度预警图中,使用散点图分别表示了检测风机和健康参考值在时间轴上的变化趋势。在风速-功率曲线图中,使用两个不同颜色的曲线分别表示了平均风速和有功功率在时间轴上的变化趋势。最后,将绘制好的图片保存到指定路径下的文件中。
阅读全文