python实现lda算法的中文文本关键词提取,中文文本为从外部文档提取
时间: 2023-10-24 16:04:52 浏览: 109
以下是Python实现LDA算法的中文文本关键词提取的示例代码:
首先需要安装gensim和jieba库:
```python
!pip install gensim
!pip install jieba
```
接下来是代码实现:
```python
import jieba
from gensim import corpora, models
# 加载停用词
stopwords = []
with open('stopwords.txt', 'r', encoding='utf-8') as f:
for line in f:
stopwords.append(line.strip())
# 加载文本数据
docs = []
with open('data.txt', 'r', encoding='utf-8') as f:
for line in f:
docs.append(line.strip())
# 分词
texts = []
for doc in docs:
words = jieba.cut(doc)
words = [word for word in words if word not in stopwords]
texts.append(words)
# 构建词典
dictionary = corpora.Dictionary(texts)
# 构建语料库
corpus = [dictionary.doc2bow(text) for text in texts]
# 训练模型
lda = models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=10)
# 打印每个主题的关键词
for topic in lda.print_topics(num_words=10):
print(topic)
```
说明:
- stopwords.txt:存放停用词的文件,每个词占一行。
- data.txt:存放需要提取关键词的中文文本,每个文本占一行。
- num_topics:指定主题的数量。
- num_words:指定每个主题的关键词数量。
阅读全文