机械臂避障路径规划蚁群算法matlab完整代码
时间: 2023-06-30 15:26:46 浏览: 171
蚁群算法实现路径规划的matlab源代码.zip
以下是机械臂避障路径规划蚁群算法的 MATLAB 完整代码:
```matlab
clear all;
close all;
clc;
% 参数设置
start_point = [0, 0]; % 起点
end_point = [10, 10]; % 终点
obstacle = [4, 4]; % 障碍物
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
rho = 0.5; % 信息素挥发因子
Q = 1; % 常系数
ant_count = 50; % 蚂蚁数量
iter_max = 500; % 最大迭代次数
d = 2; % 坐标维数
t0 = 1; % 初始信息素浓度
eta = 1 / (norm(end_point - start_point)); % 启发函数
% 初始化信息素矩阵
tau = t0 * ones(d + 1, d + 1);
tau(end, :) = 0;
tau(:, end) = 0;
% 绘制地图
figure(1);
hold on;
grid on;
axis([0 12 0 12]);
plot(start_point(1), start_point(2), 'ro', 'MarkerSize', 10);
plot(end_point(1), end_point(2), 'ro', 'MarkerSize', 10);
plot(obstacle(1), obstacle(2), 's', 'MarkerSize', 10, 'MarkerFaceColor', 'r');
text(start_point(1) + 0.5, start_point(2) + 0.5, 'Start');
text(end_point(1) + 0.5, end_point(2) + 0.5, 'End');
text(obstacle(1) + 0.5, obstacle(2) + 0.5, 'Obstacle');
xlabel('X');
ylabel('Y');
title('Map');
% 开始迭代
for iter = 1:iter_max
% 初始化蚂蚁位置
ant_pos = repmat(start_point, ant_count, 1);
ant_path = zeros(ant_count, d);
ant_dist = zeros(ant_count, 1);
% 每只蚂蚁搜索路径
for k = 1:ant_count
for i = 1:d
% 计算可行方向的概率
p = tau(ant_pos(k, i) + 1, :) .^ alpha .* eta .^ beta;
p(ant_pos(k, i)) = 0;
p(end) = 0;
p = p / sum(p);
% 选择下一个位置
next_pos = find(rand < cumsum(p), 1) - 1;
if next_pos == d
break;
end
% 更新路径和距离
ant_path(k, i) = next_pos;
ant_dist(k) = ant_dist(k) + norm(ant_pos(k, :) - ant_path(k, :));
ant_pos(k, i + 1) = next_pos;
end
end
% 计算每只蚂蚁的路径信息素贡献
delta_tau = zeros(d + 1, d + 1);
for k = 1:ant_count
if any(ant_path(k, :) == obstacle)
continue;
end
for i = 1:d
delta_tau(ant_pos(k, i) + 1, ant_path(k, i) + 1) = delta_tau(ant_pos(k, i) + 1, ant_path(k, i) + 1) + Q / ant_dist(k);
end
delta_tau(end, ant_pos(k, end) + 1) = delta_tau(end, ant_pos(k, end) + 1) + Q / ant_dist(k);
end
% 更新信息素
tau = (1 - rho) * tau + delta_tau;
% 更新启发函数
eta = 1 / (norm(end_point - start_point) + iter * ant_dist(1));
% 绘制路径
if mod(iter, 10) == 0
figure(1);
plot(start_point(1), start_point(2), 'ro', 'MarkerSize', 10);
plot(end_point(1), end_point(2), 'ro', 'MarkerSize', 10);
plot(obstacle(1), obstacle(2), 's', 'MarkerSize', 10, 'MarkerFaceColor', 'r');
text(start_point(1) + 0.5, start_point(2) + 0.5, 'Start');
text(end_point(1) + 0.5, end_point(2) + 0.5, 'End');
text(obstacle(1) + 0.5, obstacle(2) + 0.5, 'Obstacle');
xlabel('X');
ylabel('Y');
title(['Iteration ' num2str(iter)]);
for k = 1:ant_count
if any(ant_path(k, :) == obstacle)
continue;
end
line([start_point(1), ant_pos(k, 1)], [start_point(2), ant_pos(k, 2)], 'Color', [0.5, 0.5, 0.5], 'LineWidth', 1);
for i = 1:d-1
line([ant_pos(k, i), ant_path(k, i)], [ant_pos(k, i+1), ant_path(k, i+1)], 'Color', [0.5, 0.5, 0.5], 'LineWidth', 1);
end
line([ant_path(k, d), end_point(1)], [ant_path(k, d+1), end_point(2)], 'Color', [0.5, 0.5, 0.5], 'LineWidth', 1);
end
end
% 判断是否到达终点
if any(ant_path(:, end) == end_point)
disp(['Iteration ' num2str(iter) ': Reach the end point!']);
break;
end
end
```
希望能对你有所帮助!
阅读全文