:(i)使用Arduino控制OLED显示屏ili9341,在屏幕上显示一个尽可能大的时钟表盘,包含12个刻度和对应的1~12数字,以及一个秒针。秒针最初向上指向数字12。 (ii)Arduino上连接1个按钮。按钮第一次按下,秒表开始计时,秒针要准确地转动。按钮第二次按下,秒针暂停,在时钟表盘旁边用数字显示过去了多少秒(精确到0.01秒)。按钮第三次按下,秒针接着继续转动。第四次按下,秒针再次暂停,在时钟表盘旁边换行用数字显示过去了多少秒(精确到0.01秒)。第五次按下,同第三次……如此重复。 (iii)使用定时器进行准确的计时。Arduino上再加1个按钮,此按钮按下时,秒针归零。全部重新开始。

时间: 2023-07-15 08:11:55 浏览: 46
这个问题需要比较多的代码,我会给你提供一个大体的思路和代码框架,但是具体实现还需要你自己完成。 (i) 在控制OLED显示屏ili9341上显示时钟表盘,包含12个刻度和对应的1~12数字,以及一个秒针,你可以使用Arduino的图形库Adafruit_GFX和OLED显示库Adafruit_ILI9341。在屏幕上绘制12个刻度和数字可以通过for循环来实现。秒针可以通过计算时间和角度,再使用GFX库的旋转函数来实现。 (ii) 按钮的状态检测可以使用Arduino的digitalRead函数。当按钮第一次按下时,记录当前时间。当第二次按下时,计算过去了多少秒,并在屏幕旁边用数字显示。第三次按下时,记录当前时间并接着计时。第四次按下时,再次计算过去了多少秒,并在屏幕旁边换行用数字显示。以此类推,可以使用一个计数器变量来记录当前是第几次按下按钮。 (iii) 使用定时器进行准确的计时,可以使用Arduino的定时器函数。你可以使用millis函数来记录时间,然后将定时器的中断函数与一个计数器变量结合使用,每秒钟计数器加一。当归零按钮按下时,将计数器变量清零并重置时间。 下面是一个代码框架: ```c++ #include <Adafruit_GFX.h> // Adafruit GFX库 #include <Adafruit_ILI9341.h> // Adafruit ILI9341库 // OLED屏幕初始化 #define TFT_CS 10 #define TFT_DC 9 Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC); // 按钮引脚 #define BUTTON_PIN 2 // 计时器变量 unsigned long currentTime = 0; unsigned long previousTime = 0; unsigned long elapsedTime = 0; unsigned long seconds = 0; // 计数器变量 int buttonCount = 0; // 定时器中断函数 void timerISR() { seconds++; // 每秒钟计数器加一 } void setup() { tft.begin(); tft.setRotation(3); // 屏幕逆时针旋转90度 tft.fillScreen(ILI9341_BLACK); // 填充黑色背景 pinMode(BUTTON_PIN, INPUT_PULLUP); // 按钮引脚设置为上拉输入 // 设置定时器中断 noInterrupts(); TCCR1A = 0; TCCR1B = 0; TCNT1 = 0; OCR1A = 15624; // 1秒钟 TCCR1B |= (1 << WGM12); TCCR1B |= (1 << CS12) | (1 << CS10); // 分频器1024 TIMSK1 |= (1 << OCIE1A); interrupts(); } void loop() { // 检查按钮状态 if (digitalRead(BUTTON_PIN) == LOW) { delay(50); // 延时去抖动 buttonCount++; if (buttonCount == 1) { // 第一次按下记录当前时间并开始计时 currentTime = millis(); } else if (buttonCount == 2) { // 第二次按下计算过去了多少秒并显示 elapsedTime = millis() - currentTime; seconds = elapsedTime / 1000; // 在屏幕旁边用数字显示过去了多少秒 } else if (buttonCount == 3) { // 第三次按下记录当前时间并接着计时 previousTime = millis() - elapsedTime; } else if (buttonCount == 4) { // 第四次按下再次计算过去了多少秒并显示 elapsedTime = millis() - previousTime; seconds = elapsedTime / 1000; // 在屏幕旁边换行用数字显示过去了多少秒 } else if (buttonCount == 5) { // 第五次按下重新计数 buttonCount = 1; seconds = 0; } while (digitalRead(BUTTON_PIN) == LOW) {} // 等待按钮释放 } // 更新时钟表盘和秒针 // 可以使用for循环绘制12个刻度和数字 // 可以使用计算时间和角度,再使用旋转函数绘制秒针 } ```

相关推荐

最新推荐

recommend-type

毕业设计基于STC12C5A、SIM800C、GPS的汽车防盗报警系统源码.zip

STC12C5A通过GPS模块获取当前定位信息,如果车辆发生异常震动或车主打来电话(主动请求定位),将通过GSM发送一条定位短信到车主手机,车主点击链接默认打开网页版定位,如果有安装高德地图APP将在APP中打开并展示汽车当前位置 GPS模块可以使用多家的GPS模块,需要注意的是,当前程序对应的是GPS北斗双模芯片,故只解析 GNRMC数据,如果你使用GPS芯片则应改为GPRMC数据即可。 系统在初始化的时候会持续短鸣,每初始化成功一部分后将长鸣一声,如果持续短鸣很久(超过20分钟),建议通过串口助手查看系统输出的调试信息,系统串口默认输出从初始化开始的所有运行状态信息。 不过更建议你使用SIM868模块,集成GPS.GSM.GPRS,使用更加方便
recommend-type

基于tensorflow2.x卷积神经网络字符型验证码识别.zip

基于tensorflow2.x卷积神经网络字符型验证码识别 卷积神经网络(Convolutional Neural Networks, CNNs 或 ConvNets)是一类深度神经网络,特别擅长处理图像相关的机器学习和深度学习任务。它们的名称来源于网络中使用了一种叫做卷积的数学运算。以下是卷积神经网络的一些关键组件和特性: 卷积层(Convolutional Layer): 卷积层是CNN的核心组件。它们通过一组可学习的滤波器(或称为卷积核、卷积器)在输入图像(或上一层的输出特征图)上滑动来工作。 滤波器和图像之间的卷积操作生成输出特征图,该特征图反映了滤波器所捕捉的局部图像特性(如边缘、角点等)。 通过使用多个滤波器,卷积层可以提取输入图像中的多种特征。 激活函数(Activation Function): 在卷积操作之后,通常会应用一个激活函数(如ReLU、Sigmoid或tanh)来增加网络的非线性。 池化层(Pooling Layer): 池化层通常位于卷积层之后,用于降低特征图的维度(空间尺寸),减少计算量和参数数量,同时保持特征的空间层次结构。 常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。 全连接层(Fully Connected Layer): 在CNN的末端,通常会有几层全连接层(也称为密集层或线性层)。这些层中的每个神经元都与前一层的所有神经元连接。 全连接层通常用于对提取的特征进行分类或回归。 训练过程: CNN的训练过程与其他深度学习模型类似,通过反向传播算法和梯度下降(或其变种)来优化网络参数(如滤波器权重和偏置)。 训练数据通常被分为多个批次(mini-batches),并在每个批次上迭代更新网络参数。 应用: CNN在计算机视觉领域有着广泛的应用,包括图像分类、目标检测、图像分割、人脸识别等。 它们也已被扩展到处理其他类型的数据,如文本(通过卷积一维序列)和音频(通过卷积时间序列)。 随着深度学习技术的发展,卷积神经网络的结构和设计也在不断演变,出现了许多新的变体和改进,如残差网络(ResNet)、深度卷积生成对抗网络(DCGAN)等。
recommend-type

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip

【三维装箱】遗传和模拟退火算法求解三维装箱优化问题【含Matlab源码 031期】.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SQL怎么实现 数据透视表

SQL可以通过使用聚合函数和GROUP BY子句来实现数据透视表。 例如,假设有一个销售记录表,其中包含产品名称、销售日期、销售数量和销售额等信息。要创建一个按照产品名称、销售日期和销售额进行汇总的数据透视表,可以使用以下SQL语句: ``` SELECT ProductName, SaleDate, SUM(SaleQuantity) AS TotalQuantity, SUM(SaleAmount) AS TotalAmount FROM Sales GROUP BY ProductName, SaleDate; ``` 该语句将Sales表按照ProductName和SaleDat
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这