使用Arduino控制 OLED 显示屏ili9341 ,在屏幕上显示一个尽可能大的时钟表盘,包含12个刻度和对应的1~12数字,以及一个秒针。秒针最初向上指向数字12。 Arduino 上连接1个按钮。按钮第一次按下,秒表开始计时,秒针 要准确地转动。按钮第二次按下,秒针暂停,在时钟表盘旁边用数字显示过 去了多少秒(精确到0.01秒)。按钮第三次按下,秒针接着继续转动。第四 次按下,秒针再次暂停,在时钟表盘旁边换行用数字显示过去了多少秒(精 确到0.01秒) 。第五次按下,同第三次· ·如此重复。使用定时器进行准确的计时。 Arduino 上再加1个按钮,此按钮按 下时,秒针归零。全部重新开始。

时间: 2023-12-29 18:03:45 浏览: 56
以下是基于Arduino控制OLED显示屏ili9341的示例代码,实现一个时钟表盘和秒针,以及计时和控制按钮的功能: ```c++ #include <Adafruit_GFX.h> #include <Adafruit_ILI9341.h> #include <SPI.h> // OLED屏幕引脚定义 #define TFT_CS 10 #define TFT_DC 9 #define TFT_RST 8 // OLED屏幕对象定义 Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC, TFT_RST); // 按钮引脚定义 #define BTN_PIN 7 // 计时器变量定义 unsigned long start_time = 0; unsigned long elapsed_time = 0; bool is_running = false; // 时钟表盘参数定义 const int center_x = 120; const int center_y = 120; const int radius = 100; const int digit_radius = 80; const int digit_size = 4; const int digit_spacing = 10; const int tick_length = 10; const int tick_spacing = 5; const int tick_width = 2; const int sec_hand_length = 80; const int sec_hand_width = 5; // 初始化OLED屏幕 void setup() { Serial.begin(9600); tft.begin(); tft.setRotation(3); tft.fillScreen(ILI9341_BLACK); tft.setTextSize(2); tft.setCursor(0, 0); tft.setTextColor(ILI9341_WHITE); tft.println("Clock"); pinMode(BTN_PIN, INPUT_PULLUP); } // 绘制时钟表盘 void draw_clock() { tft.fillScreen(ILI9341_BLACK); // 绘制刻度和数字 for (int i = 1; i <= 12; i++) { float angle = (i - 3) * 30.0 * PI / 180.0; int x = center_x + cos(angle) * digit_radius - digit_size * 3; int y = center_y + sin(angle) * digit_radius - digit_size * 4; tft.setCursor(x, y); tft.print(i); x = center_x + cos(angle) * (radius - tick_length - tick_spacing) - tick_width / 2; y = center_y + sin(angle) * (radius - tick_length - tick_spacing) - tick_width / 2; tft.fillRect(x, y, tick_width, tick_length, ILI9341_WHITE); } // 绘制秒针 float angle = (elapsed_time % 60000) / 1000.0 * 6.0 * PI / 180.0; int x = center_x + cos(angle) * sec_hand_length - sec_hand_width / 2; int y = center_y - sin(angle) * sec_hand_length - sec_hand_width / 2; tft.fillRect(center_x - sec_hand_width / 2, center_y - sec_hand_length, sec_hand_width, sec_hand_length, ILI9341_RED); tft.fillRect(x, y, sec_hand_width, sec_hand_length, ILI9341_RED); } // 计时器中断处理函数 void timer_isr() { elapsed_time = millis() - start_time; } // 开始计时 void start_timer() { start_time = millis(); elapsed_time = 0; is_running = true; attachInterrupt(0, timer_isr, RISING); } // 停止计时 void stop_timer() { detachInterrupt(0); is_running = false; } // 归零计时器 void reset_timer() { stop_timer(); elapsed_time = 0; draw_clock(); } // 更新计时器 void update_timer() { if (is_running) { draw_clock(); } else { tft.setCursor(0, digit_radius * 2 + digit_spacing); tft.print("Elapsed time: "); tft.print(elapsed_time / 1000); tft.print("."); tft.print((elapsed_time % 1000) / 10); if (digitalRead(BTN_PIN) == LOW) { delay(50); while (digitalRead(BTN_PIN) == LOW) { // 等待按钮释放 } tft.println(); if (is_running) { stop_timer(); } else { start_timer(); } } } } // 主循环 void loop() { update_timer(); if (digitalRead(BTN_PIN) == LOW) { delay(50); while (digitalRead(BTN_PIN) == LOW) { // 等待按钮释放 } reset_timer(); } } ``` 在上述代码中,我们使用了Adafruit_ILI9341库来控制OLED显示屏,通过绘制图形和文字来实现时钟表盘和计时器的显示。我们还使用了Arduino的计时器中断和按钮输入来实现计时和控制功能。在主循环中,我们不断更新计时器的显示,并检测按钮输入来进行相应的操作。

相关推荐

zip
仅使用Arduino,显示屏和少量按钮,在16x2 LCD上显示日期的准确时钟。无需RTC模块。 硬件部件 Arduino Nano R3 × 1个 字母数字LCD,16 x 2 × 1个 触觉开关,顶部致动 × 3 微调电位器,10 kohm × 1个 跳线× 1个 最后得到了一个非常准确的时钟。运行5天后,它没有问题。 仅使用Arduino的主要问题是其内部时钟速度并非100%准确。因此,如果仅依赖于此,那么经过的毫秒数将减少一小部分,并且您正在创建的时钟将丢失或浪费时间。我的方法是测试我使用的Arduino的准确性,并确定每小时损失或获得多少毫秒。然后,所需要做的只是对速度调整进行编程,以每小时从内部跟踪的毫秒中增加或减去这种差异。 我的另一个担心是Arduino时钟是否始终不准确,但是如前所述,我编写的时钟在5天内保持了非常准确的时间,因此看来错误是一致的。 第二个问题是内部millis()函数每隔50天左右会重置一次,因此您无法操纵毫秒计数。因此,答案是使用我可以操纵的计数器替换millis()中断,该计数器将计算从午夜起的毫秒数,每天重置一次,以消除任何运行时限制。 为了评估不准确性,我假设我的计算机时钟以及因此Processing中的millis()是准确的。因此,我为Arduino创建了一个程序,每隔2秒将一次握手后经过的毫秒数发送给Processing,并编写了一个脚本供Processing处理以读取它并将其与经过的毫秒数进行比较,以显示实时结果,以及一个小时后的差值。过去。这给出了在一小时内丢失或获得的毫秒数,因此给出了时钟程序中用于速度调整的值。 附件提供了Arduino程序的代码和Processing脚本。

最新推荐

recommend-type

基于Java的五子棋游戏的设计(源代码+论文).zip

基于Java的五子棋游戏的设计(源代码+论文)
recommend-type

智能制造整体解决方案.pptx

智能制造整体解决方案.pptx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到