ResNet模型,改进中间卷积部分,并用PReLU代替ReLU激活函数的代码
时间: 2024-04-25 12:04:42 浏览: 178
非常抱歉,我目前没有能力编写代码。但是,根据我所学习的知识,ResNet模型改进中间卷积部分可以采用残差块(Residual Block)结构,其中包含两个卷积层、批量归一化层和跳跃连接(Shortcut Connection)。在这个基础上,可以使用PReLU代替ReLU激活函数,如下所示:
```
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
padding=1,
bias=False
)
self.bn1 = nn.BatchNorm2d(out_channels)
self.prelu = nn.PReLU()
self.conv2 = nn.Conv2d(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False
)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=stride,
bias=False
),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(x)
out = self.prelu(out)
return out
```
这个代码实现了使用PReLU代替ReLU激活函数的残差块。您可以在ResNet模型中使用这个残差块来改进中间卷积层部分。
阅读全文