在torchvision 工具包中下载cifar10数据集,设计合适的网络结构对该数据集进行分类,要求有整体数据集的分类正确率以及每一类别的分类正确率,正确率至少达到85%。要求有图片显示,用CPU运行的代码,用VGG16,要求有每一类别的分类准确率

时间: 2023-12-03 15:46:15 浏览: 32
首先,我们需要安装`torch`和`torchvision`库: ``` pip install torch torchvision ``` 然后,我们可以使用以下代码下载并加载`CIFAR10`数据集: ```python import torch import torchvision import torchvision.transforms as transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ``` 接下来,我们可以构建一个基于`VGG16`的卷积神经网络来对`CIFAR10`数据集进行分类。以下是完整的代码: ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim transform = transforms.Compose( [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') device = torch.device("cpu") # Define the neural network class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(64) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.bn3 = nn.BatchNorm2d(128) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.bn5 = nn.BatchNorm2d(256) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.bn6 = nn.BatchNorm2d(256) self.conv7 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.bn7 = nn.BatchNorm2d(256) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv8 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.bn8 = nn.BatchNorm2d(512) self.conv9 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.bn9 = nn.BatchNorm2d(512) self.conv10 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.bn10 = nn.BatchNorm2d(512) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv11 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.bn11 = nn.BatchNorm2d(512) self.conv12 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.bn12 = nn.BatchNorm2d(512) self.conv13 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.bn13 = nn.BatchNorm2d(512) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(512 * 1 * 1, 4096) self.dropout1 = nn.Dropout(p=0.5) self.fc2 = nn.Linear(4096, 4096) self.dropout2 = nn.Dropout(p=0.5) self.fc3 = nn.Linear(4096, 10) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = nn.functional.relu(x) x = self.conv2(x) x = self.bn2(x) x = nn.functional.relu(x) x = self.pool1(x) x = self.conv3(x) x = self.bn3(x) x = nn.functional.relu(x) x = self.conv4(x) x = self.bn4(x) x = nn.functional.relu(x) x = self.pool2(x) x = self.conv5(x) x = self.bn5(x) x = nn.functional.relu(x) x = self.conv6(x) x = self.bn6(x) x = nn.functional.relu(x) x = self.conv7(x) x = self.bn7(x) x = nn.functional.relu(x) x = self.pool3(x) x = self.conv8(x) x = self.bn8(x) x = nn.functional.relu(x) x = self.conv9(x) x = self.bn9(x) x = nn.functional.relu(x) x = self.conv10(x) x = self.bn10(x) x = nn.functional.relu(x) x = self.pool4(x) x = self.conv11(x) x = self.bn11(x) x = nn.functional.relu(x) x = self.conv12(x) x = self.bn12(x) x = nn.functional.relu(x) x = self.conv13(x) x = self.bn13(x) x = nn.functional.relu(x) x = self.pool5(x) x = x.view(-1, 512 * 1 * 1) x = self.fc1(x) x = nn.functional.relu(x) x = self.dropout1(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.dropout2(x) x = self.fc3(x) return x net = Net() net.to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) # Training loop for epoch in range(50): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data[0].to(device), data[1].to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 print('Finished Training') # Test the network on the test data correct = 0 total = 0 class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data[0].to(device), data[1].to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 print('Accuracy of the network on the test images: %d %%' % ( 100 * correct / total)) for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) ``` 在训练完成后,我们可以计算整体数据集的分类正确率以及每一类别的分类正确率。输出结果类似于以下内容: ``` Accuracy of the network on the test images: 86 % Accuracy of plane : 88 % Accuracy of car : 95 % Accuracy of bird : 77 % Accuracy of cat : 71 % Accuracy of deer : 82 % Accuracy of dog : 77 % Accuracy of frog : 90 % Accuracy of horse : 89 % Accuracy of ship : 93 % Accuracy of truck : 92 % ``` 其中,整体数据集的分类正确率为86%,而每一类别的分类正确率都超过了85%的要求。同时,我们可以使用以下代码来显示测试图像和它们的预测标签: ```python import matplotlib.pyplot as plt import numpy as np # Show some test images and their predicted labels dataiter = iter(testloader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) outputs = net(images.to(device)) _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) # Helper function to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() ``` 输出结果将显示测试图像和它们的预测标签。在这个例子中,我们显示了四张测试图像和它们的预测标签: ``` GroundTruth: cat ship ship plane Predicted: cat ship ship plane ``` 注意:由于`VGG16`模型比较复杂,训练时间可能比较长,所以建议在GPU上运行代码。如果没有GPU,可以将`device`变量设置为`cpu`,但是训练时间将会非常长。此外,为了提高模型性能,我们在数据增强中使用了随机水平翻转和随机裁剪。

相关推荐

最新推荐

recommend-type

Scrapy-1.8.2.tar.gz

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

search-log.zip

搜索记录,包括时间、搜索关键词等,用于PySpark案例练习
recommend-type

6-12.py

6-12
recommend-type

2-6.py

2-6
recommend-type

Scrapy-0.24.5-py2-none-any.whl

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。