features = ['feature1', 'feature2', ...] 特征归一化了以后怎么知道feature现在的名字是啥
时间: 2023-11-18 07:03:55 浏览: 70
如果特征在归一化前已经有了名称,那么在进行归一化后,特征名称不会发生变化。你可以通过查看特征的原始数据或者之前的代码来确定特征的名称。如果对特征进行了重命名或者处理后,你需要根据具体情况来确定特征的新名称。在一些数据处理工具中,比如pandas,可以使用列名来指定特征名称,因此在这些工具中,特征名称可以直接从数据框的列名中获取。
相关问题
class BCNN(nn.Module): def __init__(self): nn.Module.__init__(self) self.features = torchvision.models.vgg16(pretrained = True).features self.features = nn.Sequential(*list(self.features.children())[:-1]) self.fc = nn.Linear(512 ** 2, 200) for param in self.feature.parameters(): param.requires_grad = True nn.init.kaiming_normal_(self.fc.weight.data) if self.fc.bias is not None: nn.init.constant_(self.fc.bias.data, val = 0) def forward(self, x): N = x.size()[0] assert x.size() == (N, 3, 448, 448) x = self.features(x) assert x.size() == (N, 512, 28, 28) x = x.view(N, 512, 28 ** 2) x = torch.bmm(x, torch.transpose(x, 1, 2)) / (28 ** 2) assert x.size() ==(N, 512, 512) x = x.view(N, 512 ** 2) x = torch.sqrt(x + 1e-5) x = nn.functional.normalize(x) x = self.fc(x) assert x.size() == (N, 200) return x啥意思
这是一个 PyTorch 模型定义,定义了一个叫做 BCNN 的类,继承自 nn.Module。该模型使用了预训练的 VGG16 网络,去除了最后一层全连接层,将其余层保存在 self.features 中。接着定义了一个全连接层 self.fc,输入为 512x512,输出为 200。在前向传递中,输入数据 x 经过 self.features 后,先将其 reshape 成 N x 512 x (28^2),然后进行矩阵乘法,得到 N x 512 x 512 的输出,接着对输出进行开根号和 L2 归一化处理,最后送入全连接层得到输出。整个模型的作用是将输入图像映射到一个 200 维的向量表示。
解释一下这段代码:import pandas as pd from sklearn.preprocessing import MinMaxScaler # 读取数据集 data = pd.read_csv('D:/Desktop/diabetes.csv') # 获取特征列 features = data.columns[:-1] # 创建MinMaxScaler对象 scaler = MinMaxScaler() # 对每一列特征进行归一化 data[features] = scaler.fit_transform(data[features]) # 导出结果 data.to_csv('test.csv', index=False) def mm(data): mm=MinMaxScaler(feature_range=(1,2)) data=mm.fit_transform(data) print("归一化处理后的数据为:") print(data) return None #scaler=MinMaxScaler() #data_fit=scaler.fit_transform(data) #print(data_fit) mm(data)
这段代码主要是对数据集进行归一化处理,使得各个特征的取值范围都在 0 到 1 之间,有助于提高机器学习算法的准确性和效率。具体解释如下:
- 首先通过 pandas 库的 read_csv 方法读取 diabetes.csv 文件中的数据,并获取特征列。
- 然后创建一个 MinMaxScaler 对象,将特征列进行归一化处理,使得每列的最小值为 0,最大值为 1。
- 最后将归一化处理后的结果输出到 test.csv 文件中。
在代码中,定义了一个名为 mm 的函数,它的作用与上述代码相同,都是对数据进行归一化处理。函数中创建了一个 feature_range 参数为 (1,2) 的 MinMaxScaler 对象,并将数据进行归一化处理,最后输出处理后的结果。在 main 函数中,调用了 mm 函数,并将 data 作为参数传递给它,最终得到了归一化处理后的数据。
阅读全文