把criterion = nn.CrossEntropyLoss().to(device)改成focal loss函数
时间: 2024-05-06 15:21:42 浏览: 138
可以通过以下代码将 criterion 改为 Focal Loss 函数:
```python
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, gamma=2.0, alpha=None, reduction='mean'):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
self.reduction = reduction
def forward(self, input, target):
ce_loss = F.cross_entropy(input, target, reduction='none')
pt = torch.exp(-ce_loss)
focal_loss = ((1 - pt) ** self.gamma * ce_loss).mean()
if self.alpha is not None:
alpha = torch.tensor(self.alpha, device=input.device)
focal_loss *= F.multi_label_soft_margin_loss(alpha * input.sigmoid(), target, reduction='mean')
if self.reduction == 'mean':
return focal_loss
elif self.reduction == 'sum':
return focal_loss.sum()
else:
return focal_loss
criterion = FocalLoss().to(device)
```
请注意,这里我们定义了一个新的 FocalLoss 类,并在此类中实现了 Focal Loss 函数。在这个函数中,我们首先计算交叉熵(CE)损失,然后计算 PT,最后使用 Focal Loss 公式计算损失。此外,我们还支持使用 alpha 权重以及不同的 reduction 选项。
最后,我们将 criterion 设置为 Focal Loss 并传入我们定义的设备(device)。
阅读全文