建立GARCH模型前用Ljung-Box进行arch效应检验,R语言代码

时间: 2023-06-10 13:07:05 浏览: 307
以下是用R语言进行Ljung-Box检验的代码: ```R #加载所需的包 library(tseries) library(forecast) #设置随机种子,以保证结果可重复 set.seed(123) #生成随机数数据 data <- rnorm(1000) #使用GARCH(1,1)模型对数据进行建模 model <- garch(data, order = c(1,1)) #进行Ljung-Box检验 Box.test(model$resid, lag = 20, type = "Ljung-Box") ``` 在上面的代码中,我们首先加载了`tseries`和`forecast`两个包。然后,我们使用`set.seed()`函数设置了随机种子,以确保我们的结果可以重复。接着,我们使用`rnorm()`函数生成了一个长度为1000的随机数序列。最后,我们使用`garch()`函数对数据进行建模,并使用`Box.test()`函数进行Ljung-Box检验。其中,`Box.test()`函数的第一个参数是我们要检验的序列,第二个参数是我们要检验的最大滞后阶数,第三个参数是我们要使用的检验类型。在这里,我们选择了Ljung-Box类型的检验。
相关问题

在建立GARCH模型之前,用Ljung-Box检验ARCH效应代码

以下是使用Python进行Ljung-Box检验的示例代码: ```python import numpy as np import pandas as pd from statsmodels.stats.diagnostic import acorr_ljungbox # 假设我们有一个时间序列数据,存储在Pandas DataFrame中,以列名"returns"表示收益率 data = pd.read_csv('data.csv') returns = data['returns'] # 计算收益率的平方作为方差序列 variance = returns ** 2 # 使用statsmodels包中的acorr_ljungbox函数进行Ljung-Box检验 # 我们检验在前10个滞后阶数下,方差序列的自相关是否显著不为0 lags = 10 test_results = acorr_ljungbox(variance, lags=lags) # 输出检验结果 print('Ljung-Box test results:') print('Lags\tStatistic\tP-value') for i in range(lags): print(f'{i+1}\t{test_results[0][i]:.4f}\t\t{test_results[1][i]:.4f}') ``` 该代码首先将原始时间序列数据中的收益率平方作为方差序列,然后使用`acorr_ljungbox`函数进行Ljung-Box检验。其中,`lags`参数指定了要检验的滞后阶数,`test_results[0]`返回检验统计量的数值,`test_results[1]`返回检验的p值。最后,代码将检验结果输出到屏幕上。

如何用GARCH模型对时间序列数据进行建模,包括模型检验的步骤和利用模型进行预测,给出r语言代码

建立GARCH模型并进行模型检验的步骤如下: 1. 导入相关的R包: ```R library(rugarch) ``` 2. 准备时间序列数据: ```R # 假设数据存储在名为data的向量或数据框中 data <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) ``` 3. 创建GARCH模型规格: ```R spec <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), mean.model = list(armaOrder = c(0, 0))) ``` 这里使用了简单GARCH模型(sGARCH),GARCH阶数设置为(1, 1),均值模型使用了ARMA模型。 4. 拟合GARCH模型: ```R fit <- ugarchfit(spec, data) ``` 5. 模型检验: ```R # 模型残差 residuals <- fit@fit$residuals # 自相关性检验(Ljung-Box检验) Box.test(residuals, lag = 10, type = "Ljung-Box") # 异方差性检验(ARCH-LM检验) archTest(fit) # 模型参数估计结果 summary(fit) ``` 6. 模型预测: ```R # 生成未来值的预测 forecast <- ugarchforecast(fit, n.ahead = 5) # 提取预测值和置信区间上下限 predicted <- forecast@forecast$seriesFor[1, , ] lower <- forecast@forecast$lower[, 1] upper <- forecast@forecast$upper[, 1] ``` 这里的代码演示了如何使用R语言中的rugarch包来建立GARCH模型、进行模型检验和进行预测。需要注意的是,这只是一个基本的示例,实际应用中可能需要根据数据的特点进行适当的调整和扩展。

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.stattools import adfuller from statsmodels.stats.diagnostic import acorr_ljungbox from arch import arch_model from pmdarima.arima import auto_arima # 读取Excel数据 data = pd.read_excel('三个-负向标准化-二分.xlsx') data2 = pd.read_excel # 将数据转换为时间序列 data['DATE'] = pd.to_datetime(data['DATE']) # data.set_index('DATE', inplace=True) data = data['F4'] # ADF检验 ADFresult = adfuller(data) print('ADF Statistic: %f' % ADFresult[0]) print('p-value: %f' % ADFresult[1]) if ADFresult[1] > 0.05: # 进行差分 diff_data = data.diff().dropna() # 再次进行ADF检验 AADFresult = adfuller(diff_data) print('ADF Statistic after differencing: %f' % AADFresult[0]) print('p-value after differencing: %f' % AADFresult[1]) data = diff_data # Ljung-Box检验 # result = acorr_ljungbox(data, lags=10) # print('Ljung-Box Statistics: ', result[0]) # print('p-values: ', result[1]) # 使用auto_arima函数选择最佳ARIMA模型 stepwise_model = auto_arima(data, start_p=0, start_q=0, max_p=15, max_q=15, start_P=0, seasonal=False, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False) model_resid = stepwise_model.resid() print(stepwise_model.summary()) # # 计算ARIMA-GARCH组合模型的参数 # model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=2, o=0, q=1) # AGresult = model.fit(disp='off') # print(AGresult.summary()) model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', o=0) # 使用 auto_arima 函数自动确定 p 和 q 的值 stepwise_fit = auto_arima(model_resid, start_p=0, start_q=0, max_p=5, max_q=5, start_P=0, seasonal=True, d=1, D=1, trace=True, error_action='ignore', suppress_warnings=True, stepwise=False) # 根据自动确定的 p 和 q 的值来拟合模型 model = arch_model(model_resid, mean='AR', lags=2, vol='GARCH', p=stepwise_fit.order[1], q=stepwise_fit.order[2], o=0) AGresult = model.fit(disp='off') print(AGresult.summary())后面加上对最终残差进行检验的代码

1985年1月至2005年12月,原油现货交易价格如下。数据为:26.41 26.73 28.29 27.63 27.84 26.87 27.12 28.08 29.08 30.38 29.75 26.3 18.83 13.26 10.42 13.34 14.3 12.78 11.15 15.9 14.77 15.27 15 17.94 18.75 16.6 18.83 18.73 19.38 20.29 21.37 19.73 19.59 19.96 18.51 16.7 16.94 16.01 17.08 17.99 17.51 15.16 16.31 15.18 13.37 13.58 15.32 17.24 17.03 18.15 20.19 20.42 19.9 20.27 18.31 18.83 20.13 19.94 19.89 21.82 22.68 21.54 20.28 18.54 17.4 17.07 20.69 27.32 39.51 35.23 28.85 28.44 21.54 19.16 19.63 20.96 21.13 20.56 21.68 22.26 22.23 23.37 21.48 19.12 18.9 18.68 19.44 20.85 22.11 21.6 21.87 21.48 21.71 20.62 19.89 19.5 20.26 20.6 20.44 20.53 20.02 18.85 17.88 18.29 18.79 16.92 15.43 14.17 15.19 14.48 14.79 16.9 18.31 19.37 20.3 17.56 18.39 18.19 18.05 17.76 18.39 18.49 19.17 20.38 18.89 17.4 17.56 17.84 17.54 17.64 18.18 19.55 17.74 19.54 21.47 21.2 19.76 20.92 20.42 22.25 24.38 23.35 23.75 25.92 24.15 20.3 20.41 20.21 20.88 19.8 20.14 19.61 21.18 21.08 19.15 17.64 17.21 15.44 15.61 15.39 13.95 14.18 14.3 13.34 16.14 14.42 11.22 11.28 12.75 12.27 16.16 18.23 16.84 18.37 20.53 21.9 24.51 21.75 24.59 25.6 28.27 30.43 27.31 25.74 29.01 32.5 27.43 33.12 30.84 33.48 33.82 27.8 28.66 27.39 27.09 27.86 28.37 28.2 26.1 27.2 23.36 21.07 19.37 19.84 19.2 21.48 26.12 27.36 25.02 26.8 27.21 28.99 30.52 26.86 26.79 30.45 33.56 37.05 31.02 26.13 29.32 30.06 30.61 31.78 28.89 28.77 29.95 32.89 33.26 35.56 36.13 37.74 39.41 35.76 43.5 41.8 49.55 51.49 49.98 42.76 47.1 51.93 55.07 50.41 51.48 56.84 60.34 69.31 66.37 60.6 56.41 59.88 请回答:(1)研究1985-2005年原油现货价格的走势,对原油价格拟合 ARIMA模型。(2)研究原油现货价格的波动特征。如果存在条件异异方差,则拟合适当的条件异方差模型。 (3)预测2006-2007年月原油现货价格的走势及 95%的置信区间。

pdf
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

最新推荐

recommend-type

garch模型测度波动率与r语言代码展示

运用数据与第一次作业数据相同,所以时间序列的水平信息的提取在本次中不再进行分析,而是提取arima模型拟合后的残差,对其建立garch模型,对这部分进行分析...运用garch模型测度序列的波动性和进行分析的,含r语言代码
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC绩效考核指标汇总 (3).pdf

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。