使用Directional Lifting Wavelet Transform处理RGB图像并且有batc_size和 通道数的python代码及其逆变换
时间: 2023-12-10 22:38:07 浏览: 128
以下是使用Directional Lifting Wavelet Transform处理RGB图像的Python代码,其中包括批量大小和通道数:
```python
import numpy as np
import pywt
def forward_DWT_rgb(img, batch_size=1):
# 将RGB图像分解为YCbCr通道
ycbcr = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
y, cb, cr = cv2.split(ycbcr)
# 对每个通道进行DWT变换
y = forward_DWT(y, batch_size=batch_size)
cb = forward_DWT(cb, batch_size=batch_size)
cr = forward_DWT(cr, batch_size=batch_size)
# 合并通道
ycbcr = cv2.merge((y, cb, cr))
result = cv2.cvtColor(ycbcr, cv2.COLOR_YCrCb2RGB)
return result
def inverse_DWT_rgb(img, batch_size=1):
# 将RGB图像分解为YCbCr通道
ycbcr = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
y, cb, cr = cv2.split(ycbcr)
# 对每个通道进行DWT逆变换
y = inverse_DWT(y, batch_size=batch_size)
cb = inverse_DWT(cb, batch_size=batch_size)
cr = inverse_DWT(cr, batch_size=batch_size)
# 合并通道
ycbcr = cv2.merge((y, cb, cr))
result = cv2.cvtColor(ycbcr, cv2.COLOR_YCrCb2RGB)
return result
def forward_DWT(img, batch_size=1):
# 获取图像的行和列数
rows, cols = img.shape
# 计算需要增加的零填充数目
add_rows = 0 if rows % 2 == 0 else 1
add_cols = 0 if cols % 2 == 0 else 1
# 零填充图像
img = cv2.copyMakeBorder(img, 0, add_rows, 0, add_cols, cv2.BORDER_CONSTANT, value=0)
# 将图像切分为LL、LH、HL和HH子带
LL, (LH, HL, HH) = pywt.dwt2(img, 'haar')
# 将子带拼接成一个数组
output = np.stack((LL, LH, HL, HH), axis=-1)
# 递归地对LL子带进行DWT变换
if batch_size > 1 and rows > batch_size and cols > batch_size:
for i in range(0, rows, batch_size):
for j in range(0, cols, batch_size):
output[i:i+batch_size, j:j+batch_size, 0] = forward_DWT(output[i:i+batch_size, j:j+batch_size, 0], batch_size=batch_size)
elif rows > 1 and cols > 1:
output[:rows//2, :cols//2, 0] = forward_DWT(output[:rows//2, :cols//2, 0])
return output
def inverse_DWT(img, batch_size=1):
# 获取图像的行和列数
rows, cols, _ = img.shape
# 递归地对LL子带进行DWT逆变换
if batch_size > 1 and rows > batch_size and cols > batch_size:
for i in range(0, rows, batch_size):
for j in range(0, cols, batch_size):
img[i:i+batch_size, j:j+batch_size, 0] = inverse_DWT(img[i:i+batch_size, j:j+batch_size, 0], batch_size=batch_size)
elif rows > 1 and cols > 1:
img[:rows//2, :cols//2, 0] = inverse_DWT(img[:rows//2, :cols//2, 0])
# 将子带拆分为LL、LH、HL和HH
LL, LH, HL, HH = np.split(img, 4, axis=-1)
# 进行逆DWT变换
output = pywt.idwt2((LL, (LH, HL, HH)), 'haar')
# 去除零填充
output = output[:rows-1, :cols-1]
return output
```
使用示例:
```python
import cv2
# 读取图像
img = cv2.imread('test.jpg')
# 对图像进行DWT变换
result = forward_DWT_rgb(img, batch_size=32)
# 对图像进行DWT逆变换
result = inverse_DWT_rgb(result, batch_size=32)
# 显示原始图像和变换后的图像
cv2.imshow('Original', img)
cv2.imshow('Transformed', result)
cv2.waitKey(0)
```
阅读全文