帮我用Python写一个svd算法,不用numpy库
时间: 2024-04-25 08:04:15 浏览: 242
好的,我可以帮你编写一个Python的svd算法。以下是实现代码:
```python
def svd(A):
import math
# 使用Jacobi方法进行奇异值分解
# 定义Jacobi旋转操作
def jacobi(A, p, q):
if A[p][q] == 0:
c = s = 1
else:
t = (A[q][q] - A[p][p]) / (2.0 * A[p][q])
if t >= 0:
t = 1 / (t + math.sqrt(1 + t * t))
else:
t = -1 / (-t + math.sqrt(1 + t * t))
c = 1 / math.sqrt(1 + t * t)
s = t * c
B = A[:]
for i in range(len(A)):
if i != p and i != q:
B[i][p] = c * A[i][p] - s * A[i][q]
B[i][q] = s * A[i][p] + c * A[i][q]
B[p][i] = B[i][p]
B[q][i] = B[i][q]
B[p][p] = c * c * A[p][p] - 2 * s * c * A[p][q] + s * s * A[q][q]
B[q][q] = s * s * A[p][p] + 2 * s * c * A[p][q] + c * c * A[q][q]
B[p][q] = B[q][p] = 0.0
return B
# 判断是否已收敛
def converged(A, eps=1e-8):
for i in range(len(A)):
for j in range(len(A[0])):
if i != j and abs(A[i][j]) > eps:
return False
return True
# 初始化A、U、V
n = len(A)
m = len(A[0])
U = [[0.0] * n for i in range(n)]
for i in range(n):
U[i][i] = 1.0
V = [[0.0] * m for i in range(m)]
for i in range(m):
V[i][i] = 1.0
# 迭代Jacobi方法
while not converged(A):
for p in range(n):
for q in range(p+1, n):
B = jacobi(A, p, q)
U = jacobi(U, p, q)
V = jacobi(V, p, q)
A = B
# 计算奇异值和左右奇异向量
S = [abs(A[i][i]) for i in range(min(n, m))]
V = [[V[i][j] for i in range(m)] for j in range(m)]
U = [[U[i][j] / S[j] for j in range(min(n, m))] for i in range(n)]
# 返回结果
return (U, S, V)
# 测试
A = [[1,2,3],[4,5,6],[7,8,9]]
U, S, V = svd(A)
print('U =', U)
print('S =', S)
print('V =', V)
```
这是一个基于Jacobi方法的SVD算法实现。由于您要求不使用numpy库,所以代码可能相对比较长,但应该是可行的。请尝试直接将代码复制到Python解释器中运行,看看是否正确。
阅读全文