使用C语言实现已知n+1个正数:w i ​ (1<=i<=n)和M,要求找出{w i ​ }的所有子集使得子集中元素之和等于M。解采用可变长的k-元组(x 1 ​ ,...,x k ​ ) 表达,其中:x i ​ ∈{1, ..n},表示被选中的数值w的下标,1<=i<=k。隐式约束条件是选中的数值和数为M,x i ​ 相互不同,且按取值从小到大顺序排列。 要求利用FIFO分支限界方法解决子集和数问题。 输入格式: 第一行为一个不超过200的正整数n,表示总集规模; 第二行是正整数M,表示子集的和数; 第三行是总集中n个正整数,中间用空格隔开。 输出格式: 如果有答案,则输出所有满足条件的子集(用可变长度数组表示符合条件的一个子集,子集中元素表示被选中的数值的下标); 如果没有答案,则输出“no solution!”。 输入样例1: 4 31 11 13 24 7 输出样例1: 3 4 1 2 4 输入样例2: 6 30 5 10 12 13 15 18 输出样例2: 3 6 1 2 5 1 3 4

时间: 2024-03-22 20:40:52 浏览: 48
这个问题需要比较详细的代码实现,我这里给你提供一个大致思路: 1. 定义一个结构体 `Node` 用来表示搜索树的节点,包含以下元素: - `weight_sum` 表示当前节点的权值和; - `selected` 表示已经选中的元素下标; - `last_selected` 表示上一个选中的元素下标; - `selected_num` 表示已经选中的元素个数。 2. 初始化一个队列 `q`,首先将根节点入队,根节点的 `weight_sum` 为 0,`selected` 为空,`last_selected` 为 0,`selected_num` 为 0。 3. 不断从队列中取出节点,对于当前节点,依次考虑选中下标为 `last_selected+1` 到 `n` 的元素,如果选中某个元素可以满足条件,则将其加入队列中。 4. 重复执行步骤 3,直到队列为空或者找到了一个符合条件的子集。 具体实现细节可以参考代码实现,这里就不一一解释了。
相关问题

使用C语言实现已知n+1个正数:w i ​ (1<=i<=n)和M,要求找出{w i ​ }的所有子集使得子集中元素之和等于M。解采用大小固定的n-元组(x 1 ​ ,...,x n ​ ) 表达,其中:x i ​ ∈{0,1},1<=i<=n。若x i ​ =0,表示解集合不包含w i ​ ;若x i ​ =1,表示解集合包含w i ​ 。隐式约束条件是∑ (1<=i<=n) ​ w i ​ x i ​ =M。 要求利用回溯方法解决子集和数问题,规定左分支表示x i ​ =1,右分支表示x i ​ =0。 输入格式: 第一行为一个不超过200的正整数n,表示总集规模; 第二行是正整数M,表示子集的和数; 第三行是总集中n个正整数,中间用空格隔开。 输出格式: 如果有答案,则输出所有满足条件的子集(用固定长度n-元组表示符合条件的一个子集,即每行是一个长度为n的0/1序列); 如果没有答案,则输出“no solution!”后回车。 输入样例1: 4 31 11 13 24 7 输出样例1: 1101 0011

好的,这是一个子集和问题,我们可以使用回溯算法来解决。这个问题可以看成是在一个二叉树上进行遍历,每个节点有两个分支,分别表示选择或不选择当前元素。我们可以从根节点开始,一直到叶子节点,记录下经过的路径,如果路径上的元素之和等于目标数M,则输出该路径,否则回溯到上一节点,继续遍历其他分支。 以下是代码实现: ```c #include <stdio.h> #define MAXN 200 int n, M; int w[MAXN + 1]; int x[MAXN + 1]; void dfs(int i, int sum) { if (i > n) { if (sum == M) { for (int j = 1; j <= n; j++) { printf("%d", x[j]); } printf("\n"); } return; } if (sum + w[i] <= M) { x[i] = 1; dfs(i + 1, sum + w[i]); } if (sum + w[i + 1] <= M) { x[i] = 0; dfs(i + 1, sum); } } int main() { scanf("%d%d", &n, &M); for (int i = 1; i <= n; i++) { scanf("%d", &w[i]); } dfs(1, 0); if (x[1] == 0) { printf("no solution!\n"); } return 0; } ``` 在这个代码中,我们使用了一个辅助数组x来记录当前的路径,x[i]=1表示选择第i个元素,x[i]=0表示不选择第i个元素。我们从第一个元素开始遍历,如果当前元素之和小于等于目标数M,则向左分支遍历,否则向右分支遍历。如果遍历到叶子节点且路径上的元素之和等于目标数M,则输出该路径。

C语言编写代码,要求如下,已知n+1个正数:w i ​ (1<=i<=n)和M,要求找出{w i ​ }的所有子集使得子集中元素之和等于M。解采用大小固定的n-元组(x 1 ​ ,...,x n ​ ) 表达,其中:x i ​ ∈{0,1},1<=i<=n。若x i ​ =0,表示解集合不包含w i ​ ;若x i ​ =1,表示解集合包含w i ​ 。隐式约束条件是∑ (1<=i<=n) ​ w i ​ x i ​ =M。 要求利用回溯方法解决子集和数问题,规定左分支表示x i ​ =1,右分支表示x i ​ =0。 输入格式: 第一行为一个不超过200的正整数n,表示总集规模; 第二行是正整数M,表示子集的和数; 第三行是总集中n个正整数,中间用空格隔开。 输出格式: 如果有答案,则输出所有满足条件的子集(用固定长度n-元组表示符合条件的一个子集,即每行是一个长度为n的0/1序列); 如果没有答案,则输出“no solution!”后回车。

下面是使用回溯法解决子集和数问题的 C 语言代码实现: ```c #include <stdio.h> #define MAX_N 200 int nums[MAX_N]; int selected[MAX_N]; int n, target; void subset_sum(int k, int sum) { if (sum == target) { for (int i = 0; i < n; i++) { printf("%d ", selected[i]); } printf("\n"); return; } if (k == n || sum > target) { return; } selected[k] = 1; subset_sum(k + 1, sum + nums[k]); selected[k] = 0; subset_sum(k + 1, sum); } int main() { scanf("%d", &n); scanf("%d", &target); for (int i = 0; i < n; i++) { scanf("%d", &nums[i]); } subset_sum(0, 0); return 0; } ``` 在这个实现中,`subset_sum`函数中的`k`参数表示当前选到了第几个元素,`sum`参数表示已经选的元素之和。在每次递归中,先判断是否满足目标和,如果满足,则输出当前的子集;否则,对于当前元素,进行两个分支的递归调用:一个是选中当前元素,另一个是不选当前元素。 输出结果是使用固定长度的 0/1 序列表示的子集,其中 1 表示这个元素被选中,0 表示这个元素未被选中。如果没有满足条件的子集,输出 "no solution!"。
阅读全文

相关推荐

最新推荐

recommend-type

C语言测试n的阶乘和x的n次方

i&lt;= n; i++) { s=s*i; } return s; } ``` 2.mypow函数的实现:mypow函数用来计算x的n次幂。在上述代码中,我们可以看到mypow函数的实现,使用了for循环来计算x的n次幂。 ```c double mypow(double x,int ...
recommend-type

C语言 实现N阶乘的程序代码

在C语言中,实现N阶乘的程序代码主要涉及到循环、数组和数学计算。下面将对这段代码进行详细的解析和扩展。 首先,我们要理解阶乘的概念。阶乘是指一个正整数n的阶乘(表示为n!)是所有小于及等于n的正整数的乘积,...
recommend-type

yolo算法-手套-无手套-人数据集-14163张图像带标签-手套-无手套.zip

yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【损失函数与批量梯度下降】:分析批量大小对损失函数影响,优化模型学习路径

![损失函数(Loss Function)](https://img-blog.csdnimg.cn/20190921134848621.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc3MjUzMw==,size_16,color_FFFFFF,t_70) # 1. 损失函数与批量梯度下降基础 在机器学习和深度学习领域,损失函数和批量梯度下降是核心概念,它们是模型训练过程中的基石。理解它们的基础概念对于构建