求点与线段、线段与线段、线段与面、面与面相交的函数 使用C++
时间: 2023-07-31 11:10:11 浏览: 83
计算机图形学求线段交点
4星 · 用户满意度95%
这里提供一些基本的相交函数:
1. 点与线段相交:
```c++
struct Point {
double x, y;
};
struct Segment {
Point a, b;
};
// 判断两个浮点数是否相等
bool isEqual(double a, double b) {
return fabs(a - b) < 1e-8;
}
// 判断点p是否在线段s上
bool isOnSegment(Point p, Segment s) {
double cross = (p.x - s.a.x) * (s.b.y - s.a.y) - (p.y - s.a.y) * (s.b.x - s.a.x);
if (!isEqual(cross, 0)) return false; // 不在同一条直线上
double dot = (p.x - s.a.x) * (s.b.x - s.a.x) + (p.y - s.a.y) * (s.b.y - s.a.y);
if (dot < 0) return false; // 在s的延长线上
double length2 = (s.b.x - s.a.x) * (s.b.x - s.a.x) + (s.b.y - s.a.y) * (s.b.y - s.a.y);
if (dot > length2) return false; // 在s的反向延长线上
return true;
}
```
2. 线段与线段相交:
```c++
// 计算叉积 (P1-P0)×(P2-P0)
double cross(Point p1, Point p2, Point p0) {
return (p1.x - p0.x) * (p2.y - p0.y) - (p1.y - p0.y) * (p2.x - p0.x);
}
// 判断线段a和b是否相交
bool isSegmentIntersect(Segment a, Segment b) {
double c1 = cross(b.a, a.b, a.a), c2 = cross(b.b, a.b, a.a);
double c3 = cross(a.a, b.b, b.a), c4 = cross(a.b, b.b, b.a);
if (isEqual(c1, 0) && isEqual(c2, 0) && isEqual(c3, 0) && isEqual(c4, 0)) { // 共线
if (isOnSegment(b.a, a) || isOnSegment(b.b, a) || isOnSegment(a.a, b) || isOnSegment(a.b, b)) {
return true;
}
return false;
}
if (c1 * c2 <= 0 && c3 * c4 <= 0) return true;
return false;
}
```
3. 线段与面相交:
```c++
struct Plane {
Point p1, p2, p3;
};
// 判断点p是否在三角形内
bool isInTriangle(Point p, Plane plane) {
double c1 = cross(p, plane.p2, plane.p1), c2 = cross(p, plane.p3, plane.p2), c3 = cross(p, plane.p1, plane.p3);
if ((c1 > 0 && c2 > 0 && c3 > 0) || (c1 < 0 && c2 < 0 && c3 < 0)) {
return true;
}
return false;
}
// 判断线段s和面plane是否相交
bool isSegmentIntersectPlane(Segment s, Plane plane) {
if (isInTriangle(s.a, plane) || isInTriangle(s.b, plane)) return true;
double c1 = cross(s.a, s.b, plane.p1), c2 = cross(s.a, s.b, plane.p2), c3 = cross(s.a, s.b, plane.p3);
if ((c1 > 0 && c2 > 0 && c3 > 0) || (c1 < 0 && c2 < 0 && c3 < 0)) {
return true;
}
return false;
}
```
4. 面与面相交:
```c++
// 计算平面法向量
Point normal(Plane plane) {
Point v1, v2, n;
v1.x = plane.p2.x - plane.p1.x;
v1.y = plane.p2.y - plane.p1.y;
v2.x = plane.p3.x - plane.p1.x;
v2.y = plane.p3.y - plane.p1.y;
n.x = v1.y * v2.z - v1.z * v2.y;
n.y = v1.z * v2.x - v1.x * v2.z;
n.z = v1.x * v2.y - v1.y * v2.x;
return n;
}
// 判断两个平面是否相交
bool isPlaneIntersect(Plane a, Plane b) {
Point n1 = normal(a), n2 = normal(b);
double d1 = -n1.x * a.p1.x - n1.y * a.p1.y - n1.z * a.p1.z;
double d2 = -n2.x * b.p1.x - n2.y * b.p1.y - n2.z * b.p1.z;
double dot = n1.x * n2.x + n1.y * n2.y + n1.z * n2.z;
if (isEqual(dot, 1) && isEqual(d1, d2)) return true;
return false;
}
```
注意,这些函数只适用于二维平面和三维空间中的基础计算,如果需要进行更复杂的计算,需要使用更高级的算法和库。
阅读全文