with torch.no_grad():
时间: 2023-04-28 11:04:17 浏览: 112
`torch.no_grad()` 是 PyTorch 中一个上下文管理器,在进入这个上下文环境后,PyTorch 不会记录对变量的任何操作,也不会计算梯度,这样可以节省内存和计算时间。常用于测试代码或评估模型时。
举个例子
```
with torch.no_grad():
x = torch.randn(3, requires_grad=True)
y = x * 2
print(y.requires_grad) # False
```
这里我们用with torch.no_grad()禁止跟踪对tensor的操作,对于y来说也不需要求导,y.requires_grad 就是false
通常我们在评估模型时使用这个上下文管理器。
```
with torch.no_grad():
model.eval()
output = model(input)
loss = criterion(output, target)
```
在评估模型时不需要求导,我们可以使用 `torch.no_grad()` 上下文管理器,跳过计算梯度,从而提高计算速度和节省内存。
相关问题
def test(): correct = 0 total = 0 with torch.no_grad: for data in test_loader: x, y =data y_pred = model(x) _, predicted = torch.max(y_pred, dim=1) total += y.size(0) correct += (predicted == y).sum().item() print('accuracy on test_data:%d %%' % (100 *correct/total))
这段代码存在一个语法错误,在第 4 行应该调用 `torch.no_grad()` 方法而不是 `torch.no_grad` 属性。`torch.no_grad()` 方法是一个上下文管理器,它使得在该上下文中计算的所有张量都不会被跟踪梯度,从而提高了计算效率。
正确的代码应该是:
```
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
x, y = data
y_pred = model(x)
_, predicted = torch.max(y_pred, dim=1)
total += y.size(0)
correct += (predicted == y).sum().item()
print('accuracy on test_data:%d %%' % (100 * correct/total))
```
注意,在 `with` 语句中调用 `torch.no_grad()` 方法之后,所有在该上下文中计算的张量都不会被跟踪梯度,这有助于提高计算效率。然而,如果需要计算梯度,则需要退出该上下文并调用 `backward()` 方法。
with torch.no_grad
`torch.no_grad()`是一个上下文管理器,用于在进行模型推理时禁用梯度计算。在这个上下文中,不会记录梯度信息,从而减少了内存消耗并提高了推理速度。这通常用于测试集上的模型推理,因为在测试集上不需要更新模型的参数。例如:
```
with torch.no_grad():
output = model(input)
```
在这段代码中,`input`是输入数据,`model`是神经网络模型,`output`是模型的输出结果。在`with torch.no_grad()`的上下文中,模型的参数不会被更新,并且梯度计算不会被记录,从而加速了模型的推理过程。
阅读全文