def test(): correct = 0 total = 0 with torch.no_grad: for data in test_loader: x, y =data y_pred = model(x) _, predicted = torch.max(y_pred, dim=1) total += y.size(0) correct += (predicted == y).sum().item() print('accuracy on test_data:%d %%' % (100 *correct/total))

时间: 2023-12-12 13:05:29 浏览: 35
这段代码存在一个语法错误,在第 4 行应该调用 `torch.no_grad()` 方法而不是 `torch.no_grad` 属性。`torch.no_grad()` 方法是一个上下文管理器,它使得在该上下文中计算的所有张量都不会被跟踪梯度,从而提高了计算效率。 正确的代码应该是: ``` def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: x, y = data y_pred = model(x) _, predicted = torch.max(y_pred, dim=1) total += y.size(0) correct += (predicted == y).sum().item() print('accuracy on test_data:%d %%' % (100 * correct/total)) ``` 注意,在 `with` 语句中调用 `torch.no_grad()` 方法之后,所有在该上下文中计算的张量都不会被跟踪梯度,这有助于提高计算效率。然而,如果需要计算梯度,则需要退出该上下文并调用 `backward()` 方法。
相关问题

# 定义测试函数 def test(model, test_loader, device): model.eval() correct = 0 total = 0 with torch.no_grad(): for index,adj,features,labels in test_loader: #adj, features, labels = adj.to(device), features.to(device), labels.to(device) output, _, _ = model(features) _, predicted = torch.max(output.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print('Accuracy: {:.2f}%'.format(acc))

这段代码是一个 PyTorch 模型的测试函数,用于在测试集上评估模型的准确率。函数接受三个参数: - `model`:PyTorch 模型对象 - `test_loader`:测试数据集的数据加载器 - `device`:模型所在的设备,可以是 CPU 或 GPU 下面是这个函数的详细说明: 1. `model.eval()`:将模型设置为评估模式,这会关闭一些训练时使用的特定功能,例如 dropout 和 batch normalization。 2. `correct = 0` 和 `total = 0`:初始化正确预测的数量和测试样本的总数量。 3. `with torch.no_grad():`:在评估模式下,我们不需要计算梯度,因此使用 `torch.no_grad()` 上下文管理器来关闭梯度计算。 4. `for index,adj,features,labels in test_loader:`:迭代测试集数据加载器,加载测试数据的节点特征、邻接矩阵和标签。 5. `output, _, _ = model(features)`:使用模型预测节点标签,不需要输出中间层的表示或 attention 分数,因此用下划线 `_` 忽略这些值。 6. `_, predicted = torch.max(output.data, 1)`:从输出中找到每个节点标签的预测值,并计算预测的类别。 7. `total += labels.size(0)` 和 `correct += (predicted == labels).sum().item()`:更新测试样本的总数和正确预测的数量。 8. `acc = 100 * correct / total`:计算测试集准确率。 9. `print('Accuracy: {:.2f}%'.format(acc))`:打印测试集准确率。 这个测试函数可以用于对训练好的图神经网络模型进行测试,得到模型在测试集上的准确率。

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).__init__() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

好的,以下是使用LDAM损失函数进行模型训练的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from ldam_loss import LDAMLoss # 导入LDAM损失函数 # 定义模型 class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.bn2 = nn.BatchNorm2d(128) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.bn3 = nn.BatchNorm2d(256) self.fc1 = nn.Linear(256 * 4 * 4, 1024) self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.max_pool2d(x, 2) x = F.relu(self.bn2(self.conv2(x))) x = F.max_pool2d(x, 2) x = F.relu(self.bn3(self.conv3(x))) x = F.max_pool2d(x, 2) x = x.view(-1, 256 * 4 * 4) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义数据集和数据加载器 train_dataset = ... # 定义训练集 test_dataset = ... # 定义测试集 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=16, shuffle=False) # 定义LDAM损失函数 cls_num_list = ... # 定义每个类别的样本数量 criterion = LDAMLoss(cls_num_list, max_m=0.5, s=30) # 定义优化器和学习率调度器 model = MyModel().to('cuda') optimizer = optim.Adam(model.parameters(), lr=1e-3) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) # 训练模型 for epoch in range(50): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to('cuda'), target.to('cuda') data, target_a, target_b, lam = mixup_fn(data, target) optimizer.zero_grad() output = model(data) loss = criterion(output, target_a, target_b, lam) # 使用LDAM损失函数 loss.backward() nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) # 防止梯度爆炸 optimizer.step() model.eval() with torch.no_grad(): total = 0 correct = 0 for data, target in test_loader: data, target = data.to('cuda'), target.to('cuda') output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() acc = 100 * correct / total print('Epoch {}: Test Acc = {}%'.format(epoch+1, acc)) scheduler.step() ``` 在以上代码中,我们首先定义了一个名为`MyModel`的模型,然后定义了训练集和测试集的数据加载器。接着,我们使用LDAM损失函数来定义模型的损失函数,然后使用Adam优化器来训练模型。在每个epoch结束后,我们使用测试集来评估模型的性能,并使用学习率调度器来调整学习率。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.001 num_epochs = 10 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转换为Tensor类型 transforms.Normalize((0.1307,), (0.3081,)) # 标准化,使得均值为0,标准差为1 ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='C:/MNIST', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='C:/MNIST', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.pool(out) out = out.view(-1, 64 * 7 * 7) out = self.fc1(out) out = self.relu3(out) out = self.fc2(out) return out # 实例化模型并定义损失函数和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个batch打印一次训练信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() # 进入测试模式,关闭Dropout和BatchNormalization层 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))运行一下此代码

import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.autograd import Variable from torchvision.datasets import ImageFolder from torchvision.transforms import transforms from torch.utils.data import DataLoader # 定义超参数 num_epochs = 10 batch_size = 32 learning_rate = 0.001 # 定义数据转换方式 transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) # 加载数据集 train_dataset = ImageFolder(root='./ChineseStyle/train/', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = ImageFolder(root='./ChineseStyle/test/', transform=transform) test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 定义卷积神经网络结构 class Net(nn.Module): def init(self): super(Net, self).init() self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5, stride=1, padding=2) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=6, out_channels=32, kernel_size=5, stride=1, padding=2) self.fc1 = nn.Linear(in_features=32 * 8 * 8, out_features=128) self.fc2 = nn.Linear(in_features=128, out_features=15) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 8 * 8) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 实例化卷积神经网络 net = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 将输入和标签转换为变量 images = Variable(images) labels = Variable(labels) # 将梯度清零 optimizer.zero_grad() # 向前传递 outputs = net(images) # 计算损失函数 loss = criterion(outputs, labels) # 反向传播和优化 loss.backward() optimizer.step() # 打印统计信息 if (i + 1) % 100 == 0: print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.item())) # 测试模型 correct = 0 total = 0 for images, labels in test_loader: # 向前传递 outputs = net(Variable(images)) # 获取预测结果 _, predicted = torch.max(outputs.data, 1) # 更新统计信息 total += labels.size(0) correct += (predicted == labels).sum() # 计算准确率 print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))有没有测试到测试集

最新推荐

recommend-type

华中科技大学电信专业 课程资料 作业 代码 实验报告-数据结构-内含源码和说明书.zip

华中科技大学电信专业 课程资料 作业 代码 实验报告-数据结构-内含源码和说明书.zip
recommend-type

java 游戏飞翔的小鸟

java 制作游戏 飞翔的小鸟
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):