利用torch.nn实现 softmax 回归在Fashion-MNIST数据集上进行训练和测试,并从loss,训 练集以及测试集上的准确率等多个角度对结果进行分析
时间: 2024-04-14 07:27:02 浏览: 133
Softmax回归模型(matlab代码)
4星 · 用户满意度95%
好的,以下是使用torch.nn实现softmax回归在Fashion-MNIST数据集上进行训练和测试,并对结果进行分析的步骤:
首先,导入所需的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
```
然后,加载Fashion-MNIST数据集并进行预处理:
```python
# 定义数据转换
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 加载训练集和测试集
train_dataset = datasets.FashionMNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.FashionMNIST(root='./data', train=False, transform=transform, download=True)
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
```
接下来,定义softmax回归模型:
```python
class SoftmaxRegression(nn.Module):
def __init__(self, input_dim, num_classes):
super(SoftmaxRegression, self).__init__()
self.linear = nn.Linear(input_dim, num_classes)
def forward(self, x):
out = self.linear(x)
return out
model = SoftmaxRegression(28 * 28, 10)
```
然后,定义损失函数和优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
```
接着,进行模型的训练:
```python
num_epochs = 10
for epoch in range(num_epochs):
total_loss = 0
for images, labels in train_loader:
images = images.view(-1, 28 * 28)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
# 打印每个epoch的损失函数值
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, total_loss))
```
最后,对模型进行测试并分析结果:
```python
# 在训练集上进行预测
correct_train = 0
total_train = 0
with torch.no_grad():
for images, labels in train_loader:
images = images.view(-1, 28 * 28)
outputs = model(images)
_, train_predicted = torch.max(outputs.data, 1)
total_train += labels.size(0)
correct_train += (train_predicted == labels).sum().item()
train_accuracy = correct_train / total_train
# 在测试集上进行预测
correct_test = 0
total_test = 0
with torch.no_grad():
for images, labels in test_loader:
images = images.view(-1, 28 * 28)
outputs = model(images)
_, test_predicted = torch.max(outputs.data, 1)
total_test += labels.size(0)
correct_test += (test_predicted == labels).sum().item()
test_accuracy = correct_test / total_test
print('Train Accuracy: {:.2f}%'.format(train_accuracy * 100))
print('Test Accuracy: {:.2f}%'.format(test_accuracy * 100))
```
通过以上步骤,我们可以使用torch.nn实现softmax回归模型在Fashion-MNIST数据集上进行训练和测试,并从loss、训练集以及测试集上的准确率等多个角度对结果进行分析。可以观察每个epoch的损失函数逐渐减小,同时计算训练集和测试集上的准确率来评估模型的性能。
阅读全文