解释 tree = KDTree(points3D[:, :2]) with open("./voc/skelon/3d/"+file, 'w', encoding='utf-8') as f1: for y in range(skeleton.shape[0]): for x in range(skeleton.shape[1]): if skeleton[y][x] == 255: # 寻找离某二维点最近的三维点 x_axis_coord, y_axis_coord = transform_xy(x, y) query_point = [x_axis_coord, y_axis_coord] dist, index = tree.query(query_point) #把所找的每个点的三维坐标以txt文本格式保存 f1.write(str(points3D[index][0])+" "+ str(points3D[index][1])+" "+ str(points3D[index][2])+" "+'\n')
时间: 2024-02-10 19:18:34 浏览: 128
这段代码的作用是将一个二维的图像骨架(skeleton)映射到三维空间中的点云(points3D)。具体地,它首先用二维坐标作为查询点,在三维点云中找到离该点最近的点,并把该点的三维坐标写入一个文本文件中。其中,KDTree是一个用于高效地查找最近邻点的数据结构,它的构造函数需要传入点云的二维坐标,因为要在二维平面上查找查询点的最近邻。transform_xy函数则是将二维坐标转换为三维坐标系中的坐标,具体实现可能因应用不同而有所不同。
相关问题
根据上述代码,改写下列程序try: df1 = pd.read_csv('image_3_2.txt', sep='\t', header=None, error_bad_lines=False, na_values='?') df2 = pd.read_csv('image_6.txt', sep='\t', header=None, error_bad_lines=False, na_values='?') tree = KDTree(df2.iloc[:, :2].values) k = 4 distances, indices = tree.query(df1.iloc[:, :2].values, k=k) values = df2.iloc[indices[:, 1:], 2].values mean_values = values.mean(axis=1) df1.iloc[:, 2] = mean_values df1.to_csv('4.txt', sep='\t', header=None, index=None) except Exception as e: print("Error: ", e)
根据上述代码,改写后的程序如下:
```
try:
points3D = pd.read_csv('points3D.txt', sep='\t', header=None, error_bad_lines=False, na_values='?')
skeleton = cv2.imread('skeleton.jpg', cv2.IMREAD_GRAYSCALE)
tree = KDTree(points3D.iloc[:, :2].values)
with open("./voc/skelon/3d/result.txt", 'w', encoding='utf-8') as f1:
for y in range(skeleton.shape[0]):
for x in range(skeleton.shape[1]):
if skeleton[y][x] == 255:
x_axis_coord, y_axis_coord = transform_xy(x, y)
query_point = [x_axis_coord, y_axis_coord]
dist, index = tree.query(query_point)
f1.write(str(points3D.iloc[index, 0]) + " " +
str(points3D.iloc[index, 1]) + " " +
str(points3D.iloc[index, 2]) + " " + '\n')
except Exception as e:
print("Error: ", e)
```
这段代码与原始代码类似,不过是将输入的数据文件和输出的文件名、格式都进行了修改以适应新的应用场景。同时,由于我们无法直接读取图像文件,需要使用cv2库里的imread函数获取二维骨架图像。最后,将得到的三维坐标写入到txt文件中。
修改程序df1 = pd.read_csv('image_3_2.txt', sep='\t', header=None, error_bad_lines=False) df2 = pd.read_csv('image_6.txt', sep='\t', header=None, error_bad_lines=False) tree = KDTree(df2.iloc[:, :2].values) k = 4 distances, indices = tree.query(df1.iloc[:, :2].values, k=k) values = df2.iloc[indices[:, 1:], 2].values mean_values = values.mean(axis=1) df1.iloc[:, 2] = mean_values df1.to_csv('4.txt', sep='\t', header=None, index=None)
你的修改看起来是正确的,但是我建议你在读取文件时使用参数 na_values='?' 来将 '?' 转换为 NaN 值,以便更好地处理缺失值。下面是修改后的程序:
```python
import pandas as pd
from scipy.spatial import KDTree
df1 = pd.read_csv('image_3_2.txt', sep='\t', header=None, error_bad_lines=False, na_values='?')
df2 = pd.read_csv('image_6.txt', sep='\t', header=None, error_bad_lines=False, na_values='?')
tree = KDTree(df2.iloc[:, :2].values)
k = 4
distances, indices = tree.query(df1.iloc[:, :2].values, k=k)
values = df2.iloc[indices[:, 1:], 2].values
mean_values = values.mean(axis=1)
df1.iloc[:, 2] = mean_values
df1.to_csv('4.txt', sep='\t', header=None, index=None)
```
这样做可以帮助你更好地处理缺失值,避免程序出现异常。
阅读全文