梯度下降和随机梯度下降原理
时间: 2023-09-26 15:05:30 浏览: 97
随机梯度下降算法
梯度下降和随机梯度下降是机器学习中常用的优化算法,主要用于模型参数的更新。
梯度下降是一种求解函数最小值的方法,其基本思路是通过不断迭代,沿着函数的梯度方向逐步逼近函数的最小值点。具体而言,梯度下降的更新公式为:
θ = θ - α * ∇J(θ)
其中,θ表示模型参数,α表示学习率,∇J(θ)表示损失函数J(θ)对θ求偏导数的梯度。在每一次迭代中,都会根据当前模型参数和损失函数的梯度更新模型参数,直到达到一定的迭代次数或损失函数的值收敛为止。
随机梯度下降是梯度下降的一种变体,其主要区别在于每次迭代仅使用一组随机选择的样本来更新模型参数,而不是使用所有样本。这样做的好处是可以加快模型参数的更新速度,同时可以避免陷入局部最优解。随机梯度下降的更新公式为:
θ = θ - α * ∇J(θ, xi, yi)
其中,xi和yi表示随机选择的一组样本,∇J(θ, xi, yi)表示损失函数J(θ)在样本(xi, yi)处对θ求偏导数的梯度。随机梯度下降的迭代次数一般比梯度下降少,但每次迭代的计算量较大,需要对样本进行随机批量处理。
阅读全文