python爬取豆瓣电影top250数据可视化并存入csv

时间: 2023-08-05 13:52:27 浏览: 26
好的,我可以为您提供代码参考。首先需要安装相关的库:requests、BeautifulSoup、pandas、matplotlib。 ```python import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt # 获取电影信息 def get_movie_info(url): headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') movie_list = soup.find_all('div', class_='hd') info_list = [] for movie in movie_list: title = movie.a.span.text.strip() # 电影名称 link = movie.a['href'] # 电影链接 rating = movie.parent.find('span', class_='rating_num').text # 评分 rating_num = movie.parent.find('div', class_='star').find_all('span')[-1].text[:-3] # 评分人数 info_list.append([title, link, float(rating), int(rating_num)]) return info_list # 获取所有电影信息 def get_all_movie_info(): url = 'https://movie.douban.com/top250' info_list = [] for i in range(10): page_url = url + f'?start={i*25}' info_list += get_movie_info(page_url) return info_list # 可视化电影评分分布 def plot_rating_distribution(data): plt.hist(data, bins=10, range=(0, 10), color='b', alpha=0.5) plt.xlabel('Rating') plt.ylabel('Number of Movies') plt.title('Distribution of Movie Ratings') plt.savefig('rating_distribution.png') plt.show() # 存储电影信息到csv文件 def save_to_csv(data): df = pd.DataFrame(data, columns=['Title', 'Link', 'Rating', 'RatingNum']) df.to_csv('movie_info.csv', index=False) if __name__ == '__main__': movie_info = get_all_movie_info() save_to_csv(movie_info) ratings = [info[2] for info in movie_info] plot_rating_distribution(ratings) ``` 以上代码中,`get_movie_info(url)`函数用于获取单页电影信息,`get_all_movie_info()`函数用于获取所有电影信息,`save_to_csv(data)`函数用于将数据存储到csv文件中,`plot_rating_distribution(data)`函数用于绘制电影评分分布直方图。最后在主函数中调用这些函数即可。

相关推荐

好的,我可以为您提供一个大致的思路: 1.使用Python的requests和BeautifulSoup库爬取豆瓣电影top250的页面数据,提取出电影的名称、评分、导演、主演、年份、地区、类型等信息。 2.将提取出的电影信息存储到CSV文件中,可以使用Python的csv库。 3.使用Python的pandas库读取CSV文件,进行数据清洗和处理,如去重、填充空值等。 4.使用Python的matplotlib库或seaborn库进行数据可视化,实现电影评分分布图、电影类型占比图、电影地区分布图等。 下面是一个简单的示例代码,仅供参考: python import requests from bs4 import BeautifulSoup import csv import pandas as pd import matplotlib.pyplot as plt # 爬取豆瓣电影top250的页面数据 url = 'https://movie.douban.com/top250' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') # 提取电影信息并存储到CSV文件中 movies = [] for item in soup.find_all('div', class_='item'): movie = [] movie.append(item.find('span', class_='title').text) movie.append(item.find('span', class_='rating_num').text) movie.append(item.find('p', class_='').text.strip().split('\n')[0].split(':')[-1]) movie.append(item.find('p', class_='').text.strip().split('\n')[1].strip().split('/')[0]) movie.append(item.find('p', class_='').text.strip().split('\n')[1].strip().split('/')[1]) movie.append(item.find('p', class_='').text.strip().split('\n')[1].strip().split('/')[2]) movie.append(item.find('p', class_='').text.strip().split('\n')[1].strip().split('/')[3]) movies.append(movie) with open('movies.csv', 'w', newline='', encoding='utf-8') as f: writer = csv.writer(f) writer.writerow(['电影名称', '电影评分', '导演', '主演', '年份', '地区', '类型']) for movie in movies: writer.writerow(movie) # 读取CSV文件,进行数据清洗和处理 df = pd.read_csv('movies.csv') df = df.drop_duplicates(subset=['电影名称']) df['年份'] = df['年份'].str.strip() df['类型'] = df['类型'].str.strip() # 数据可视化 # 电影评分分布图 plt.hist(df['电影评分'], bins=20) plt.xlabel('电影评分') plt.ylabel('电影数量') plt.show() # 电影类型占比图 df['类型'].value_counts().plot(kind='pie', autopct='%1.1f%%') plt.axis('equal') plt.legend(bbox_to_anchor=(1.2, 1)) plt.show() # 电影地区分布图 df['地区'].value_counts().plot(kind='bar') plt.xlabel('地区') plt.ylabel('电影数量') plt.show() 以上代码仅提供了基本的爬取、数据处理和数据可视化功能,您可以根据自己的需求进行修改和优化。
### 回答1: 豆瓣电影是众所周知的一个知名电影评分网站,其中的TOP250电影榜单更是备受关注。爬取这个榜单的数据可以帮助我们更好地了解电影市场和评价,数据可视化方面可以更好地呈现这些数据。 首先,我们可以使用Python程序编写爬虫,抓取豆瓣电影TOP250的数据。我们可以通过分析网页源代码,选取需要的信息,例如电影名称、上映时间、豆瓣评分、评分人数、电影类型、导演、演员等信息。然后,将所有信息保存在CSV文件中。我们可以使用BeautifulSoup模块或Scrapy框架来实现爬虫程序的编写。 接下来,我们可以使用Python的数据可视化工具来对这些数据进行可视化处理。例如,我们可以使用matplotlib或Seaborn绘制电影评分的统计图表和线型图,了解每部电影评分的分布情况、评分人数的多寡、豆瓣评分的走向等。另外,我们也可以绘制散点图或热图,从电影类型、上映时间等角度分析不同类型电影的评分情况。我们还可以利用词云图工具呈现电影的标签云图,更直观地展示豆瓣用户对电影的评价。 总的来说,我们可以使用Python的爬虫和数据可视化工具来爬取豆瓣电影TOP250榜单的数据,并且将数据以图表、统计、云图等形式进行可视化分析,从而更好地了解电影市场和评价。 ### 回答2: 豆瓣电影Top250是电影爱好者们都很熟悉的一个电影排行榜。为了更好地了解这个排行榜的情况,我们可以利用Python爬取豆瓣电影Top250上的电影信息,并将数据制作成可视化图表,以更直观地呈现数据。 首先,我们需要使用Python爬虫技术获取豆瓣电影Top250中每部电影的信息。一般来说,爬取网页数据需要用到一些第三方爬虫库,比如Requests和BeautifulSoup。使用Requests库可以向豆瓣服务器发送请求,获取Top250的网页HTML文件。接着,我们可以使用BeautifulSoup库解析HTML文件,从中获取每一部电影的名称、评分、演员、导演、简介等信息。爬取完毕后,将获取到的数据存储在MySQL或者MongoDB数据库中,方便后续对数据的处理和分析。 接下来,我们需要将获取到的数据进行数据可视化。我们可以使用Python中的Matplotlib或者Seaborn等数据可视化库来制作可视化图表。比如,我们可以生成柱状图、饼图、折线图等多种图表类型,展现Top250中电影各类别的数量分布、电影评分的分布情况、导演、演员等数据的贡献度等信息。 总之,通过Python爬取豆瓣电影Top250数据,并利用数据可视化技术制作图表,我们可以更好地了解电影市场的情况,从中找到一些有用的数据洞察点,对后续的电影市场分析等工作提供有力支持。 ### 回答3: 随着互联网的普及和数据挖掘的发展,数据可视化已经成为当今最流行的技术之一。而Python语言的出现,极大地促进了数据可视化技术的发展,并且能够使数据可视化更加高效、便捷。 Python爬取豆瓣电影Top250数据可以使用爬虫框架Scrapy,通过对网页的解析和内容抓取,将所需数据存入数据集中。数据集中存储了每个电影的名称、导演、主演、类型、上映时间、评价人数、评分等信息,这些数据可以通过Python的数据可视化工具如Matplotlib、Pandas等进行可视化处理。 通过数据可视化可以得到丰富的数据分析和呈现,如: 1.不同类型电影的数量 通过Python可视化工具可以得到不同类型电影的数量,并且可以使用饼图、柱状图等图表进行图像展示,帮助人们更好地了解豆瓣Top250电影中各类型的分布情况。 2.电影排名及评价情况 通过Python爬虫框架获取的豆瓣Top250电影可以进行排名展示及评价等数据的分析。可视化工具可以帮助我们通过散点图、折线图等形式直观地了解电影排名及评价情况。 3.电影时长对评分的影响 通过Python可视化工具可视化处理电影时长对评分的影响。可以得出电影时长对于电影评分存在明显影响的结论,以饼图的形式将主观评价高的电影与电影时长进行对比。 Python爬取豆瓣电影Top250,通过数据可视化工具可以使我们直观地了解到豆瓣Top250电影的分类情况、排名和评价等数据信息,同时,也可以了解到电影时长等因素对电影评价的影响,这对我们对电影的分析与推荐可以起到积极的作用,有助于我们更好地了解电影行业的情况。
好的,下面是完整的爬取豆瓣电影Top250并可视化的代码,并将数据存入csv文件中: python import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt # 请求URL url = 'https://movie.douban.com/top250' # 得到页面的内容 def get_page_content(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'} page = requests.get(url, headers=headers).content return page # 解析页面内容,获取电影信息 def parse_page_content(page): soup = BeautifulSoup(page, 'html.parser') movie_list_soup = soup.find('ol', attrs={'class': 'grid_view'}) movie_name_list = [] movie_rating_list = [] movie_info_list = [] for movie_li in movie_list_soup.find_all('li'): detail = movie_li.find('div', attrs={'class': 'hd'}) movie_name = detail.find('span', attrs={'class': 'title'}).getText() movie_rating = movie_li.find('span', attrs={'class': 'rating_num'}).getText() movie_info = detail.find('span', attrs={'class': 'inq'}).getText() if detail.find('span', attrs={'class': 'inq'}) else '' movie_name_list.append(movie_name) movie_rating_list.append(movie_rating) movie_info_list.append(movie_info) return movie_name_list, movie_rating_list, movie_info_list # 爬取豆瓣电影Top250 def get_movie_top250(url): movie_name_list = [] movie_rating_list = [] movie_info_list = [] for i in range(0, 10): page = get_page_content(url + '?start=' + str(i * 25)) movie_name, movie_rating, movie_info = parse_page_content(page) movie_name_list += movie_name movie_rating_list += movie_rating movie_info_list += movie_info # 将数据存入csv文件 data = {'电影名称': movie_name_list, '电影评分': movie_rating_list, '电影简介': movie_info_list} df = pd.DataFrame(data) df.to_csv('douban_movie_top250.csv', index=False, encoding='utf-8-sig') # 数据可视化 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.figure(figsize=(10, 10)) plt.scatter(movie_rating_list, movie_name_list, s=100) plt.xlabel('电影评分') plt.ylabel('电影名称') plt.title('豆瓣电影Top250') plt.savefig('douban_movie_top250.png', dpi=300) print('豆瓣电影Top250数据已保存到douban_movie_top250.csv,图片已保存到douban_movie_top250.png') if __name__ == '__main__': get_movie_top250(url) 如果想要运行代码,需要安装以下库: - requests - BeautifulSoup - pandas - matplotlib 可使用以下命令安装: pip install requests pip install beautifulsoup4 pip install pandas pip install matplotlib 代码执行完毕后,会在当前目录下生成douban_movie_top250.csv和douban_movie_top250.png文件,分别是豆瓣电影Top250的数据和数据可视化结果。
好的,下面是代码,可以将豆瓣电影Top250的数据可视化并存入csv文件中: python import requests from bs4 import BeautifulSoup import pandas as pd import matplotlib.pyplot as plt # 请求URL url = 'https://movie.douban.com/top250' # 得到页面的内容 def get_page_content(url): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36'} page = requests.get(url, headers=headers).content return page # 解析页面内容,获取电影信息 def parse_page_content(page): soup = BeautifulSoup(page, 'html.parser') movie_list_soup = soup.find('ol', attrs={'class': 'grid_view'}) movie_name_list = [] movie_rating_list = [] movie_info_list = [] for movie_li in movie_list_soup.find_all('li'): detail = movie_li.find('div', attrs={'class': 'hd'}) movie_name = detail.find('span', attrs={'class': 'title'}).getText() movie_rating = movie_li.find('span', attrs={'class': 'rating_num'}).getText() movie_info = detail.find('span', attrs={'class': 'inq'}).getText() if detail.find('span', attrs={'class': 'inq'}) else '' movie_name_list.append(movie_name) movie_rating_list.append(movie_rating) movie_info_list.append(movie_info) return movie_name_list, movie_rating_list, movie_info_list # 爬取豆瓣电影Top250 def get_movie_top250(url): movie_name_list = [] movie_rating_list = [] movie_info_list = [] for i in range(0, 10): page = get_page_content(url + '?start=' + str(i * 25)) movie_name, movie_rating, movie_info = parse_page_content(page) movie_name_list += movie_name movie_rating_list += movie_rating movie_info_list += movie_info # 将数据存入csv文件 data = {'电影名称': movie_name_list, '电影评分': movie_rating_list, '电影简介': movie_info_list} df = pd.DataFrame(data) df.to_csv('douban_movie_top250.csv', index=False, encoding='utf-8-sig') # 数据可视化 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.figure(figsize=(10, 10)) plt.scatter(movie_rating_list, movie_name_list, s=100) plt.xlabel('电影评分') plt.ylabel('电影名称') plt.title('豆瓣电影Top250') plt.savefig('douban_movie_top250.png', dpi=300) print('豆瓣电影Top250数据已保存到douban_movie_top250.csv,图片已保存到douban_movie_top250.png') if __name__ == '__main__': get_movie_top250(url) 如果想要运行代码,需要安装以下库: - requests - BeautifulSoup - pandas - matplotlib 可使用以下命令安装: pip install requests pip install beautifulsoup4 pip install pandas pip install matplotlib 代码执行完毕后,会在当前目录下生成douban_movie_top250.csv和douban_movie_top250.png文件,分别是豆瓣电影Top250的数据和数据可视化结果。
### 回答1: Python爬取天气数据可以使用第三方库如requests和beautifulsoup进行网络请求和解析数据。可以先使用requests请求天气网站的数据,然后使用beautifulsoup进行解析。解析出的数据可以存入csv或者excel表格中进行可视化分析。如使用matplotlib,seaborn等库进行数据可视化。 ### 回答2: 随着物联网的迅速发展,各种设备生成的海量数据增长迅猛,而其中气象数据更是销售、生产、供应链等领域的必备数据。而Python语言中拥有众多的模块,常用于数据处理及可视化的pandas、matplotlib以及requests能够帮助人们顺利完成天气数据的爬取并进行可视化分析。在本篇文章中我们将详细介绍如何使用Python实现天气数据爬取及可视化分析。 接下来的步骤将介绍如何从气象网站上爬取天气数据并利用pandas等模块进行分析。 第一步:爬虫数据 通过Python的requests模块,我们可以将自动获取站点的源代码并记录它。例如,我们选择一个全国性的天气预报站点—中国天气网,将其url以变量string类型的方式存储起来: url = 'http://www.weather.com.cn/weather/101010100.shtml' 然后,我们调用requests模块中get()函数来获取站点的html代码,代码如下: import requests response = requests.get(url) response.encoding = 'utf-8' html = response.text print(html) 在通过requests模块获取到网页源码之后,我们怎样获取一段指定的数据呢?这时候就需要用到Python的第二个模块 xpath或beautifulsoup来解析网页源码。它们在解析HTML/ XML/ JSON数据时十分方便,还内置了很多有趣的API。 在解析子元素之前,使用xpath或beautifulsoup获取目标元素。以上述中国天气网的数据为例,我们只需要通过xpath语法获取天气数据即可: from lxml import etree selector = etree.HTML(html) inf = selector.xpath('//ul[@class="clearfix"]/li') all_data = [] for each in inf: day = each.xpath('./h1/text()')[0] weather = each.xpath('./p[@class="wea"]/text()')[0] temp = each.xpath('./p[@class="tem"]/text()') if len(temp) == 2: temperature_highest = temp[0] temperature_lowest = temp[1] else: temperature_highest = temperature_lowest = temp[0] wind = each.xpath('./p[@class="win"]/i/text()')[0] all_data.append({'day': day, 'weather': weather, 'temperature_highest': temperature_highest, 'temperature_lowest': temperature_lowest, 'wind': wind}) 第二步:数据处理 获取完数据之后,数据处理是必不可少的环节。pandas是一个Python模块,提供了数据操作的工具,主要用于数据处理、清洗、分析等。pandas支持多种文件格式,可以方便地进行数据读取和写入,如CSV、Excel、JSON、SQL、HTML等。 我们通过pandas的库函数DataFrame()将列表seriestoweather DataFrame类型的数据,并支持对日期格式的转换和相应的处理: import pandas as pd weather_data = pd.DataFrame(all_data) weather_data.to_csv('weather_data.csv', index=False, encoding='utf-8') # 转换时间格式,并把day更新为日期时间 date = pd.to_datetime(weather_data['day'].apply(lambda x: x.split('日')[0]), format='%Y年%m月%d') weather_data['day'] = date.dt.strftime('%Y-%m-%d') 第三步:数据可视化 利用matplotlib模块,不仅可以将数据可视化,还可以进一步更改其颜色、字体、图例等细节。 需要特别注意的是图标的格式,因为我们需要布局、尺寸以及x轴和y轴的标签等来制作图表。 Matplotlib库具有很好的处理控制和自定义的能力,因此可以轻松地创建各种图表和可视化结果。 这里我们使用matplotlib模块画出天气数据,即x轴为日期时间,y轴为温度,分析实现代码如下: import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示汉字 plt.rcParams['axes.unicode_minus'] = False # 显示负号 fig, ax = plt.subplots(figsize=(10, 6)) # 画最高温度、最低温度和平均温度 ax.plot(date, weather_data['temperature_highest'].astype('int'), label='最高气温', color='#F08080') ax.plot(date, weather_data['temperature_lowest'].astype('int'), label='最低气温', color='#00BFFF') ax.plot(date, (weather_data['temperature_highest'].astype('int')+weather_data['temperature_lowest'].astype('int'))/2, label='平均气温', color='#7B68EE') # 设定图表信息 plt.title('近一个月天气情况') # 标题 plt.xlabel('日期') # x轴标签 plt.ylabel('气温') # y轴标签 plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) # 横坐标格式 plt.legend(loc=0) # 图例 plt.xticks(rotation=45) # 旋转x轴刻度标签 plt.grid(axis='y') # 画纵向间隔线 plt.show() 绘制出来的图标如下所示,能够清晰反映出近一个月内每日最高气温、最低气温以及平均气温的变化趋势。此图表可以很方便地帮助你快速/直观地了解天气情况,从中提取信息并找到改进自己生产、销售、供应链、客户服务领域等方面的机会。 ### 回答3: 本文主要介绍如何用Python爬取天气数据并进行可视化分析。 第一步:爬取数据。我们可以使用Python的requests和BeautifulSoup库进行网页解析和数据提取。以爬取北京市气温为例: python import requests from bs4 import BeautifulSoup url = 'http://www.tianqihoubao.com/weather/province.aspx?id=110000' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} res = requests.get(url, headers=headers) soup = BeautifulSoup(res.text, 'html.parser') table = soup.find_all('table', class_='b') for tr in table[0].tbody.find_all('tr'): tds = tr.find_all('td') if len(tds) == 8: date = tds[0].text.strip() high_temp = tds[1].text.strip() low_temp = tds[2].text.strip() weather = tds[3].text.strip() wind = tds[4].text.strip() print(date, high_temp, low_temp, weather, wind) 上述代码首先使用requests库获取北京市天气网页的html代码,然后使用BeautifulSoup库解析获取到的内容。之后,使用find_all方法找到class属性为b的table标签,并通过遍历每行tr和每列td的方式,提取日期、最高温度、最低温度、天气和风力。 第二步:数据可视化分析。我们可以使用Python的numpy、pandas和matplotlib库进行数据处理和绘图。以可视化北京市气温为例: python import pandas as pd import matplotlib.pyplot as plt data = {'date': [], 'high_temp': [], 'low_temp': []} for tr in table[0].tbody.find_all('tr'): tds = tr.find_all('td') if len(tds) == 8: data['date'].append(tds[0].text.strip()) data['high_temp'].append(float(tds[1].text.strip()[:-1])) data['low_temp'].append(float(tds[2].text.strip()[:-1])) df = pd.DataFrame(data) df.set_index('date', inplace=True) plt.rcParams['font.sans-serif'] = ['SimHei'] df.plot(kind='line', style=['r--', 'b--'], figsize=(10, 5)) plt.xlabel('日期') plt.ylabel('气温(℃)') plt.title('北京市近七日气温变化') plt.legend(['最高气温', '最低气温']) plt.show() 上述代码首先使用pandas库将数据整理成DataFrame格式,并对日期进行设为行索引。之后,使用matplotlib库绘制折线图,以直观地展示最高气温和最低气温的变化趋势。 以上就是使用Python爬取天气数据及其中的可视化分析过程。通过爬取天气数据,并用可视化手段呈现数据,我们可以更好地了解和分析气象变化,为教学、科研等提供了方便和效率,同时提高了数据使用的可视化能力和数据处理能力。
滑动平均算法(Moving Average)是常用于时间序列数据处理的一种算法,可以平滑随时间变化的数据并减少噪声,常用于股票价格预测、天气预测等领域。下面介绍Python实现滑动平均算法的详细步骤。 1. 导入模块 首先需要导入numpy模块用于数据处理。 2. 读取数据 可以使用pandas模块读取csv格式的数据,这里以读取stockdata.csv文件为例。 python import pandas as pd data=pd.read_csv('stockdata.csv') 3. 初始化滑动窗口 滑动平均的计算是基于滑动窗口的,滑动窗口的大小表示取几个数据的平均值。可以根据实际需求设置窗口大小,这里以窗口大小为5为例。 python window_size=5 4. 计算滑动平均 在滑动窗口大小确定的情况下,可以通过循环遍历数据进行滑动平均的计算。具体步骤如下: (1) 初始化第一个滑动窗口和滑动平均值列表。 (2) 遍历所有数据。 (3) 当当前窗口内数据不足时,直接将当前数据加入窗口并计算当前窗口内数据的平均值。 (4) 当当前窗口内数据已足够时,先将第一个数据弹出窗口,再将当前数据加入窗口并计算当前窗口内数据的平均值。将计算得到的滑动平均值存入滑动平均值列表。 python import numpy as np def moving_average(data,window_size): ma_list=[] window=data[:window_size] ma=np.mean(window) ma_list.append(ma) for i in range(window_size,len(data)): window=window[1:] window=np.append(window,data[i]) ma=np.mean(window) ma_list.append(ma) return ma_list data_list=list(data['close']) ma_list=moving_average(data_list,window_size) 5. 可视化结果 可以使用matplotlib模块将原始数据和滑动平均值列表一起绘制在图表上,以便于比较和分析。 python import matplotlib.pyplot as plt plt.plot(data_list,label='Original Data') plt.plot(ma_list,label='Moving Average') plt.legend() plt.show() 完整代码如下: python import numpy as np import pandas as pd import matplotlib.pyplot as plt def moving_average(data,window_size): ma_list=[] window=data[:window_size] ma=np.mean(window) ma_list.append(ma) for i in range(window_size,len(data)): window=window[1:] window=np.append(window,data[i]) ma=np.mean(window) ma_list.append(ma) return ma_list data=pd.read_csv('stockdata.csv') data_list=list(data['close']) window_size=5 ma_list=moving_average(data_list,window_size) plt.plot(data_list,label='Original Data') plt.plot(ma_list,label='Moving Average') plt.legend() plt.show() 参考文献:https://zh.wikipedia.org/zh-cn/%E6%BB%91%E5%8A%A8%E5%B9%B3%E5%9D%87

最新推荐

[] - 2023-11-02 等不及了!是时候重新认识生活,认识自己了|互动读书.pdf

互联网快讯、AI,发展态势,互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势

我国芯片领域取得重大突破;库克回应每年iPhone几乎没太大升级;俄罗斯自研光刻机最新进展:

互联网快讯、AI,发展态势,互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势互联网快讯、AI,发展态势

项目管理知识体系讲解.pptx

项目管理知识体系讲解.pptx

plc控制交通灯毕业设计论文.doc

plc控制交通灯毕业设计论文.doc

"阵列发表文章竞争利益声明要求未包含在先前发布版本中"

阵列13(2022)100125关于先前发表的文章竞争利益声明声明未包含在先前出现的以下文章的发布版本问题 的“数组”。 的 适当的声明/竞争利益由作者提供的陈述如下。1. https://doi.org/10.1016/j.array.2020.100021“Deeplearninginstatic,metric-basedbugprediction”,Array,Vol-ume6,2020,100021,竞争利益声明:发表后联系作者,要求发表利益声明。2. 自 适 应 恢 复 数 据 压 缩 。 [ 《 阵 列 》 第 12 卷 , 2021 , 100076 ,https://doi.org/10.1016/j.array.2021.100076.竞争利益声明:发表后联系作者,要求发表利益声明。3. “使用深度学习技术和基于遗传的特征提取来缓解演示攻击”。[《阵列》第7卷,2020年,100029]https://doi.org/10.1016/j.array.2020.100029。竞争利益声明:发表后联系作者,要求发表利益声明。4. “基于混合优化算法的协作认知无线电网络资源优化分配”. [Array,Volume12,2021,100093https://doi

动态规划与最大子数组和问题:如何高效解决序列中的最大子数组和

## 1. 引言 ### 1.1 背景介绍 动态规划是一种解决复杂问题的算法设计方法,它通过将问题分解成子问题,并解决每个子问题,从而逐步构建最优解。在计算机科学和算法领域,动态规划被广泛应用于优化问题的求解。 ### 1.2 动态规划在算法中的重要性 动态规划不仅仅是一种算法,更是一种解决问题的思维方式。它通过保存子问题的解,避免了重复计算,从而在时间和空间上实现了效率的提升。这种思想在很多经典算法问题中都发挥着关键作用,其中之一便是最大子数组和问题。 ### 1.3 最大子数组和问题的实际应用场景 最大子数组和问题是在一个数组中找到一个具有最大和的连续子数组的问题。这个问题在实际中有

def charlist(): li=[] for i in range('A','Z'+1): li.append(i) return li

这段代码有误,因为 `range()` 函数的第一个参数应该是整数类型而不是字符串类型,应该改为 `range(ord('A'), ord('Z')+1)`。同时,还需要将 `ord()` 函数得到的整数转化为字符类型,可以使用 `chr()` 函数来完成。修改后的代码如下: ``` def charlist(): li = [] for i in range(ord('A'), ord('Z')+1): li.append(chr(i)) return li ``` 这个函数的作用是返回一个包含大写字母 A 到 Z 的列表。

本科毕设论文-—基于单片机控制“航标灯”的控制系统设计与调试.doc

本科毕设论文-—基于单片机控制“航标灯”的控制系统设计与调试.doc

动态多智能体控制的贝叶斯优化模型及其在解决复杂任务中的应用

阵列15(2022)100218空间导航放大图片创作者:John A. 黄a,b,1,张克臣c,Kevin M. 放大图片作者:Joseph D. 摩纳哥ca约翰霍普金斯大学应用物理实验室,劳雷尔,20723,MD,美国bKavli Neuroscience Discovery Institute,Johns Hopkins University,Baltimore,21218,VA,USAc约翰霍普金斯大学医学院生物医学工程系,巴尔的摩,21205,MD,美国A R T I C L E I N F O保留字:贝叶斯优化多智能体控制Swarming动力系统模型UMAPA B S T R A C T用于控制多智能体群的动态系统模型已经证明了在弹性、分散式导航算法方面的进展。我们之前介绍了NeuroSwarms控制器,其中基于代理的交互通过类比神经网络交互来建模,包括吸引子动力学 和相位同步,这已经被理论化为在导航啮齿动物的海马位置细胞回路中操作。这种复杂性排除了通常使用的稳定性、可控性和性能的线性分析来研究传统的蜂群模型此外�

动态规划入门:如何有效地识别问题并构建状态转移方程?

### I. 引言 #### A. 背景介绍 动态规划是计算机科学中一种重要的算法思想,广泛应用于解决优化问题。与贪婪算法、分治法等不同,动态规划通过解决子问题的方式来逐步求解原问题,充分利用了子问题的重叠性质,从而提高了算法效率。 #### B. 动态规划在计算机科学中的重要性 动态规划不仅仅是一种算法,更是一种设计思想。它在解决最短路径、最长公共子序列、背包问题等方面展现了强大的能力。本文将深入介绍动态规划的基本概念、关键步骤,并通过实例演练来帮助读者更好地理解和运用这一算法思想。 --- ### II. 动态规划概述 #### A. 什么是动态规划? 动态规划是一种将原问题拆解