score threhold

时间: 2024-05-29 13:15:20 浏览: 10
Score threshold refers to a minimum score that must be achieved by a prediction or result in order to be considered valid or useful. In machine learning, score thresholds are often used in classification tasks to determine whether a prediction belongs to a particular class or not. For example, if the score threshold for a binary classification problem is set to 0.5, any prediction with a score of 0.5 or higher would be considered a positive result, while any prediction with a score below 0.5 would be considered negative. Score thresholds can be adjusted based on the specific needs and requirements of a particular task.
相关问题

$ python demo.py -h usage: demo.py [-h] [--model {alike-t,alike-s,alike-n,alike-l}] [--device DEVICE] [--top_k TOP_K] [--scores_th SCORES_TH] [--n_limit N_LIMIT] [--no_display] [--no_sub_pixel] input ALike Demo. positional arguments: input Image directory or movie file or "camera0" (for webcam0). optional arguments: -h, --help show this help message and exit --model {alike-t,alike-s,alike-n,alike-l} The model configuration --device DEVICE Running device (default: cuda). --top_k TOP_K Detect top K keypoints. -1 for threshold based mode, >0 for top K mode. (default: -1) --scores_th SCORES_TH Detector score threshold (default: 0.2). --n_limit N_LIMIT Maximum number of keypoints to be detected (default: 5000). --no_display Do not display images to screen. Useful if running remotely (default: False). --no_sub_pixel Do not detect sub-pixel keypoints (default: False).什么意思

这是一个 Python 脚本的帮助信息。这个脚本用于展示 ALike 模型在输入图像中检测关键点的效果。下面是一些参数的解释: - `input`: 输入图像的路径,可以是一个图像文件、一个视频文件或者 "camera0"(表示使用摄像头)。 - `--model`: 模型的配置。有四个可选项:alike-t、alike-s、alike-n、alike-l。 - `--device`: 运行设备,默认为 CUDA。 - `--top_k`: 检测到的关键点数量。-1 表示使用阈值模式,>0 表示使用 top K 模式,默认值为 -1。 - `--scores_th`: 关键点检测器的阈值,默认为 0.2。 - `--n_limit`: 最大关键点数量,默认为 5000。 - `--no_display`: 是否在屏幕上显示图像,默认为 False。 - `--no_sub_pixel`: 是否检测亚像素级别的关键点,默认为 False。

解释下面这段代码,并说明哪些参数是可调整的:def adjust_predicts(score, label, threshold, pred=None, calc_latency=False): """ Calculate adjusted predict labels using given `score`, `threshold` (or given `pred`) and `label`. Args: score (np.ndarray): The anomaly score label (np.ndarray): The ground-truth label threshold (float): The threshold of anomaly score. A point is labeled as "anomaly" if its score is lower than the threshold. pred (np.ndarray or None): if not None, adjust `pred` and ignore `score` and `threshold`, calc_latency (bool): Returns: np.ndarray: predict labels Method from OmniAnomaly (https://github.com/NetManAIOps/OmniAnomaly) """ if label is None: predict = score > threshold return predict, None if pred is None: if len(score) != len(label): raise ValueError("score and label must have the same length") predict = score > threshold else: predict = pred actual = label > 0.1 anomaly_state = False anomaly_count = 0 latency = 0 for i in range(len(predict)): if any(actual[max(i, 0) : i + 1]) and predict[i] and not anomaly_state: anomaly_state = True anomaly_count += 1 for j in range(i, 0, -1): if not actual[j]: break else: if not predict[j]: predict[j] = True latency += 1 elif not actual[i]: anomaly_state = False if anomaly_state: predict[i] = True if calc_latency: return predict, latency / (anomaly_count + 1e-4) else: return

该函数用于调整预测标签,基于给定的分数 `score`、阈值 `threshold`(或给定的预测值 `pred`)和真实标签 `label`。 如果一个点的分数低于阈值,则将其标记为“异常”点。 参数 `score`、`label` 和 `threshold` 都是可调整的。 参数说明: - `score`:np.ndarray 类型,表示每个时间步的异常分数; - `label`:np.ndarray 类型,表示每个时间步的真实标签; - `threshold`:float 类型,表示异常分数的阈值。如果一个点的分数低于阈值,则将其标记为“异常”点; - `pred`:np.ndarray 类型或者 None,表示是否给定预测值,如果给定,会忽略 `score` 和 `threshold`; - `calc_latency`:bool 类型,表示是否计算延迟。 该函数首先判断是否有真实标签 `label`,如果没有,则直接通过阈值 `threshold` 对异常分数 `score` 进行预测,并返回预测标签和延迟。如果有真实标签,则通过阈值 `threshold` 或预测值 `pred` 对异常分数 `score` 进行预测,并根据实际情况对预测标签进行调整,最终返回调整后的标签和延迟。 其中 `actual` 表示真实标签中大于 0.1 的标签,`anomaly_state` 表示当前是否处于异常状态,`anomaly_count` 表示异常的数量,`latency` 表示延迟的数量。 该函数中可调整的参数是 `score`、`label` 和 `threshold`。

相关推荐

在vs2015 c++ .h中加入这段代码会报重定义 namespace cv_dnn { namespace { template <typename T> static inline bool SortScorePairDescend(const std::pair<float, T>& pair1, const std::pair<float, T>& pair2) { return pair1.first > pair2.first; } } // namespace inline void GetMaxScoreIndex(const std::vector<float>& scores, const float threshold, const int top_k, std::vector<std::pair<float, int> >& score_index_vec) { for (size_t i = 0; i < scores.size(); ++i) { if (scores[i] > threshold) { score_index_vec.push_back(std::make_pair(scores[i], i)); } } std::stable_sort(score_index_vec.begin(), score_index_vec.end(), SortScorePairDescend<int>); if (top_k > 0 && top_k < (int)score_index_vec.size()) { score_index_vec.resize(top_k); } } template <typename BoxType> inline void NMSFast_(const std::vector<BoxType>& bboxes, const std::vector<float>& scores, const float score_threshold, const float nms_threshold, const float eta, const int top_k, std::vector<int>& indices, float(*computeOverlap)(const BoxType&, const BoxType&)) { CV_Assert(bboxes.size() == scores.size()); std::vector<std::pair<float, int> > score_index_vec; GetMaxScoreIndex(scores, score_threshold, top_k, score_index_vec); // Do nms. float adaptive_threshold = nms_threshold; indices.clear(); for (size_t i = 0; i < score_index_vec.size(); ++i) { const int idx = score_index_vec[i].second; bool keep = true; for (int k = 0; k < (int)indices.size() && keep; ++k) { const int kept_idx = indices[k]; float overlap = computeOverlap(bboxes[idx], bboxes[kept_idx]); keep = overlap <= adaptive_threshold; } if (keep) indices.push_back(idx); if (keep && eta < 1 && adaptive_threshold > 0.5) { adaptive_threshold *= eta; } } } // copied from opencv 3.4, not exist in 3.0 template<typename Tp> static inline double jaccardDistance_(const Rect_<Tp>& a, const Rect<_Tp>& b) { Tp Aa = a.area(); Tp Ab = b.area(); if ((Aa + Ab) <= std::numeric_limits<Tp>::epsilon()) { // jaccard_index = 1 -> distance = 0 return 0.0; } double Aab = (a & b).area(); // distance = 1 - jaccard_index return 1.0 - Aab / (Aa + Ab - Aab); } template <typename T> static inline float rectOverlap(const T& a, const T& b) { return 1.f - static_cast<float>(jaccardDistance(a, b)); } void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores, const float score_threshold, const float nms_threshold, std::vector<int>& indices, const float eta = 1, const int top_k = 0) { NMSFast(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); } }

最新推荐

recommend-type

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx
recommend-type

计算机本科生毕业论文1111

老人服务系统
recommend-type

探索Elasticsearch的节点角色:集群的构建基石

Elasticsearch是一个基于Lucene的搜索引擎,它提供了一个分布式、多租户能力的全文搜索引擎,具有HTTP web接口和无模式的JSON文档。Elasticsearch是用Java编写的,但也可以作为服务在多种操作系统上运行,包括Windows、Linux和macOS。 ### Elasticsearch的主要特点包括: 1. **分布式性质**:Elasticsearch天生设计为分布式,可以很容易地扩展到数百台服务器,处理PB级别的数据。 2. **实时搜索**:Elasticsearch提供了快速的搜索能力,可以实时索引和搜索数据。 3. **高可用性**:通过自动分片和复制,Elasticsearch确保了数据的高可用性和容错性。 4. **多租户**:Elasticsearch支持多租户,允许多个用户或应用共享同一集群资源。 5. **丰富的查询语言**:Elasticsearch提供了强大的查询语言,支持结构化、非结构化数据的复杂搜索需求。 6. **横向扩展**:Elasticsearch可以通过简单地增加节点来扩展集群。 等
recommend-type

JAVA语言考试系统的设计与实现(论文+源代码+文献综述+外文翻译+开题报告).zip

JAVA语言考试系统的设计与实现(论文+源代码+文献综述+外文翻译+开题报告)
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依