class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x)这是我使用的自注意力机制模块代码,但是在运行训练程序的时候报错提示: File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 109, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 258, in forward return F.conv1d(input, self.weight, self.bias, self.stride, RuntimeError: Given groups=1, weight of size [256, 1024, 1], expected input[16, 512, 1] to have 1024 channels, but got 512 channels instead,你知道这是为什么吗?我该如何解决,你可以给我提供详细的代码
时间: 2023-07-16 13:16:44 浏览: 113
根据错误提示来看,似乎是输入的通道数和权重的通道数不匹配导致的错误。你的输入是一个1维的张量,大小为[16, 512, 1],其中16是batch size,512是通道数,1是序列长度。而你的第一个卷积层的输出通道数为in_channels // reduction,即512 // 4 = 128,所以输出的y的通道数是[16, 128, 1]。接下来的fc2层的输入通道数为in_channels // reduction,即128,输出通道数为in_channels,即512,所以输出的y的通道数是[16, 512, 1]。但是在执行F.conv1d时,weight的大小是[256, 1024, 1],其中1024是权重的输入通道数,这与输入的通道数512不匹配,导致了错误。
解决这个问题的方法是将第一个卷积层的输出通道数改为in_channels // reduction * 2,即256,这样就能够与权重的输入通道数1024匹配了。修改后的代码如下:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Conv1d(in_channels, in_channels // reduction * 2, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv1d(in_channels // reduction * 2, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
希望能够帮到你!
阅读全文