em算法Java代码,MapReduce实现EM算法步骤+代码
时间: 2023-12-29 10:03:35 浏览: 141
EM算法java实现
5星 · 资源好评率100%
EM算法是一种迭代算法,用于在含有隐变量的概率模型中进行参数估计。以下是EM算法的Java代码实现:
```java
public class EMAlgorithm {
// E-step:计算隐变量的后验概率
public double[][] getPosterior(double[][] data, double[] weights, double[] means, double[] variances) {
int numPoints = data.length;
int numClusters = means.length;
double[][] posterior = new double[numPoints][numClusters];
for (int i = 0; i < numPoints; i++) {
double sum = 0.0;
for (int j = 0; j < numClusters; j++) {
posterior[i][j] = weights[j] * Gaussian(data[i], means[j], variances[j]);
sum += posterior[i][j];
}
for (int j = 0; j < numClusters; j++) {
posterior[i][j] /= sum;
}
}
return posterior;
}
// M-step:计算新的参数
public double[] getWeights(double[][] posterior) {
int numPoints = posterior.length;
int numClusters = posterior[0].length;
double[] weights = new double[numClusters];
for (int j = 0; j < numClusters; j++) {
double sum = 0.0;
for (int i = 0; i < numPoints; i++) {
sum += posterior[i][j];
}
weights[j] = sum / numPoints;
}
return weights;
}
public double[] getMeans(double[][] data, double[][] posterior) {
int numClusters = posterior[0].length;
int numDimensions = data[0].length;
double[] means = new double[numClusters];
for (int j = 0; j < numClusters; j++) {
double sum = 0.0;
double totalWeight = 0.0;
for (int i = 0; i < data.length; i++) {
sum += posterior[i][j] * data[i][j];
totalWeight += posterior[i][j];
}
means[j] = sum / totalWeight;
}
return means;
}
public double[] getVariances(double[][] data, double[][] posterior, double[] means) {
int numClusters = posterior[0].length;
int numDimensions = data[0].length;
double[] variances = new double[numClusters];
for (int j = 0; j < numClusters; j++) {
double sum = 0.0;
double totalWeight = 0.0;
for (int i = 0; i < data.length; i++) {
sum += posterior[i][j] * Math.pow(data[i][j] - means[j], 2);
totalWeight += posterior[i][j];
}
variances[j] = sum / totalWeight;
}
return variances;
}
private double Gaussian(double[] dataPoint, double mean, double variance) {
double stdDev = Math.sqrt(variance);
return (1.0 / (stdDev * Math.sqrt(2 * Math.PI))) * Math.exp(-Math.pow(dataPoint[0] - mean, 2) / (2 * variance));
}
}
```
下面是MapReduce实现EM算法的步骤:
1. Map阶段:对每个数据点,计算它对每个聚类中心的后验概率,输出键值对\<聚类中心, 后验概率\>;
2. Reduce阶段:对每个聚类中心,计算它的新的权重、均值和方差,并输出键值对\<聚类中心, 参数\>;
3. 迭代以上步骤,直到收敛为止。
以下是MapReduce实现EM算法的Java代码:
```java
public class KMeansMR {
public static class Map extends Mapper<LongWritable, Text, IntWritable, DoubleWritable> {
private final static IntWritable cluster = new IntWritable();
private final static DoubleWritable posterior = new DoubleWritable();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 读取数据点
double[] dataPoint = parseDataPoint(value.toString());
// 计算数据点对每个聚类中心的后验概率
for (int i = 0; i < numClusters; i++) {
double posterior = weights[i] * Gaussian(dataPoint, means[i], variances[i]);
cluster.set(i);
posterior.set(posterior);
context.write(cluster, posterior);
}
}
}
public static class Reduce extends Reducer<IntWritable, DoubleWritable, IntWritable, Text> {
private final static DecimalFormat df = new DecimalFormat("#.####");
public void reduce(IntWritable key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException {
double sum = 0.0;
int count = 0;
for (DoubleWritable value : values) {
sum += value.get();
count++;
}
// 计算新的权重、均值和方差
double newWeight = sum / numPoints;
double[] newMeans = getNewMeans(key.get());
double[] newVariances = getNewVariances(key.get(), newMeans);
// 输出键值对<聚类中心, 参数>
Text outputValue = new Text(df.format(newWeight) + "," + Arrays.toString(newMeans) + "," + Arrays.toString(newVariances));
context.write(key, outputValue);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "KMeansMR");
job.setJarByClass(KMeansMR.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
```
阅读全文