这个问题如今可以描述为判断欧拉回路是否存在的问题。欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个无向图,问是否存在欧拉回路? 输入格式: 输入第一行给出两个正整数,分别是节点数N (1≤N≤1000)和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。 输出格式: 若欧拉回路存在则输出1,否则输出0。
时间: 2024-03-02 13:49:03 浏览: 109
对于一个无向图 G,存在欧拉回路的充分必要条件是 G 中每个顶点的度数均为偶数,并且 G 是连通图。因此,判断欧拉回路是否存在,可以按照以下步骤进行:
1. 统计每个顶点的度数,判断是否均为偶数。
2. 判断图是否为连通图,可以使用 DFS 或 BFS 等图遍历算法来实现。
如果以上两个条件均满足,则存在欧拉回路,输出 1,否则输出 0。
具体实现可以参考下面的 Python 代码:
```python
from collections import defaultdict
def dfs(G, u, visited):
visited[u] = True
for v in G[u]:
if not visited[v]:
dfs(G, v, visited)
n, m = map(int, input().split())
G = defaultdict(list)
degree = [0] * (n + 1)
for i in range(m):
u, v = map(int, input().split())
G[u].append(v)
G[v].append(u)
degree[u] += 1
degree[v] += 1
# 判断每个顶点的度数是否均为偶数
if any(d % 2 != 0 for d in degree[1:]):
print(0)
exit()
# 判断是否为连通图
visited = [False] * (n + 1)
dfs(G, 1, visited)
if any(not visited[i] for i in range(1, n + 1)):
print(0)
else:
print(1)
```
其中,G 是一个 defaultdict,用于存储无向图中每个顶点的邻接表,degree 是一个列表,用于存储每个顶点的度数。在读入每条边时,更新 G 和 degree 数组。判断每个顶点的度数是否均为偶数时,使用了 any 函数,它会判断列表中是否存在任意一个元素满足给定条件。判断是否为连通图时,使用了 DFS 算法。如果有任意一个顶点未被访问到,则说明图不是连通图,输出 0。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![doc](https://img-home.csdnimg.cn/images/20241231044833.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)