写一段基于pytorch用卷积神经网络来实现故障预测的代码
时间: 2023-12-10 11:39:37 浏览: 99
基于卷积神经网络结合机器学习的高光谱分类 全套代码pytorch制作
5星 · 资源好评率100%
以下是一个基于PyTorch的卷积神经网络用于故障预测的示例代码:
```python
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3)
self.fc1 = nn.Linear(32 * 10 * 10, 128)
self.fc2 = nn.Linear(128, 2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = x.view(-1, 32 * 10 * 10)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = CNN()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练模型
for epoch in range(10):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
# 测试模型
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.cross_entropy(output, target, size_average=False).data.item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
```
这个示例代码中,我们定义了一个卷积神经网络模型CNN,它有两个卷积层和两个全连接层。我们使用SGD优化器进行训练,并使用交叉熵损失函数进行模型评估。在训练过程中,我们使用PyTorch的自动微分功能来计算梯度并更新模型参数。在测试过程中,我们计算模型的平均损失和准确率。
阅读全文