import pandas as pd from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt # 加载csv文件 data = pd.read_csv("data填补.csv") # 将标签进行编码 le = LabelEncoder() data['label'] = le.fit_transform(data['label']) # 划分自变量和因变量 X = data.drop(columns=["label"]) y = data["label"] # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 定义决策树模型 dt_model = DecisionTreeClassifier() # 训练决策树模型 dt_model.fit(X_train, y_train) # 计算测试集的准确率 accuracy = dt_model.score(X_test, y_test) print("测试集准确率:", accuracy) # 可视化决策树 plt.figure(figsize=(30, 30)) plot_tree(dt_model, filled=True, feature_names=X.columns, class_names=le.classes_) plt.show()我想使这段代码生成的决策图只显示置信度大于0.95的区间应该如何更改
时间: 2024-02-25 15:57:08 浏览: 94
你可以在 `plot_tree()` 函数中添加 `precision` 参数,来控制节点中显示的类别置信度的精度。默认情况下,`precision` 参数的值为 3,可以将其设置为 2 或更高的值,以显示更高精度的置信度。然后,在生成决策树图后,可以使用 matplotlib 库的相关函数来调整节点的可视化效果,只显示置信度大于 0.95 的节点。
修改后的代码如下:
```python
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
# 加载csv文件
data = pd.read_csv("data填补.csv")
# 将标签进行编码
le = LabelEncoder()
data['label'] = le.fit_transform(data['label'])
# 划分自变量和因变量
X = data.drop(columns=["label"])
y = data["label"]
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义决策树模型
dt_model = DecisionTreeClassifier()
# 训练决策树模型
dt_model.fit(X_train, y_train)
# 计算测试集的准确率
accuracy = dt_model.score(X_test, y_test)
print("测试集准确率:", accuracy)
# 可视化决策树
plt.figure(figsize=(30, 30))
plot_tree(dt_model, filled=True, feature_names=X.columns, class_names=le.classes_, precision=2)
# 调整节点的可视化效果,只显示置信度大于0.95的节点
for node in dt_model.tree_.children_left:
confidence = dt_model.tree_.value[node][0][y_train.mode()[0]]
if confidence >= 0.95:
plt.gca().texts[node].set_text(f'Confidence: {confidence:.2f}')
else:
plt.gca().texts[node].set_text('')
for node in dt_model.tree_.children_right:
confidence = dt_model.tree_.value[node][0][y_train.mode()[0]]
if confidence >= 0.95:
plt.gca().texts[node].set_text(f'Confidence: {confidence:.2f}')
else:
plt.gca().texts[node].set_text('')
plt.show()
```
这样修改后,生成的决策树图中,只有置信度大于 0.95 的节点会显示置信度值,其余节点将不显示。
阅读全文