python判断向量是否相等
时间: 2023-07-08 21:33:51 浏览: 290
在Python中,可以使用NumPy库中的`numpy.array_equal()`函数来判断两个向量是否相等。
`numpy.array_equal()`函数会比较两个向量的元素是否完全相同,如果相同则返回True,否则返回False。
以下是一个简单的例子:
```python
import numpy as np
v1 = np.array([1, 2, 3])
v2 = np.array([1, 2, 3])
v3 = np.array([1, 2, 4])
print(np.array_equal(v1, v2)) # 输出True
print(np.array_equal(v1, v3)) # 输出False
```
在上面的例子中,我们首先定义了两个向量v1和v2,它们的元素完全相同,因此`numpy.array_equal()`函数返回True。然后我们定义了另一个向量v3,它与v1的最后一个元素不同,因此`numpy.array_equal()`函数返回False。
需要注意的是,`numpy.array_equal()`函数要求比较的两个向量必须形状完全相同。如果形状不同,则会抛出ValueError异常。
相关问题
定义一个向量类,判断向量是否相等,并求模,加减乘除和向量积与数量积。用python
以下是一个基本的向量类的实现,包括判断向量相等、向量模、向量加减、向量乘除、向量积和数量积等操作:
```python
class Vector:
def __init__(self, lst):
self._values = list(lst)
def __repr__(self):
return "Vector({})".format(self._values)
def __str__(self):
return "({})".format(", ".join(str(e) for e in self._values))
def __len__(self):
return len(self._values)
def __getitem__(self, index):
return self._values[index]
def __setitem__(self, index, value):
self._values[index] = value
def __eq__(self, other):
if len(self) != len(other):
return False
for i in range(len(self)):
if self[i] != other[i]:
return False
return True
def __add__(self, other):
if len(self) != len(other):
raise ValueError("Vectors must be of the same length")
return Vector([self[i] + other[i] for i in range(len(self))])
def __sub__(self, other):
if len(self) != len(other):
raise ValueError("Vectors must be of the same length")
return Vector([self[i] - other[i] for i in range(len(self))])
def __mul__(self, other):
if isinstance(other, (int, float)):
return Vector([self[i] * other for i in range(len(self))])
elif isinstance(other, Vector):
if len(self) != len(other):
raise ValueError("Vectors must be of the same length")
return sum([self[i] * other[i] for i in range(len(self))])
else:
raise TypeError("Multiplication is only defined for scalar and vector values")
def __rmul__(self, other):
return self.__mul__(other)
def __truediv__(self, other):
if isinstance(other, (int, float)):
return Vector([self[i] / other for i in range(len(self))])
else:
raise TypeError("Division is only defined for scalar values")
def cross(self, other):
if len(self) != 3 or len(other) != 3:
raise ValueError("Cross product is only defined for 3-dimensional vectors")
return Vector([
self[1] * other[2] - self[2] * other[1],
self[2] * other[0] - self[0] * other[2],
self[0] * other[1] - self[1] * other[0]
])
def dot(self, other):
return self * other
def norm(self):
return math.sqrt(sum([e ** 2 for e in self._values]))
```
使用示例:
```python
v1 = Vector([1, 2, 3])
v2 = Vector([1, 2, 3])
v3 = Vector([4, 5, 6])
print(v1 == v2) # True
print(v1 == v3) # False
print(v1 + v3) # Vector([5, 7, 9])
print(v1 - v3) # Vector([-3, -3, -3])
print(v1 * 2) # Vector([2, 4, 6])
print(v1 / 2) # Vector([0.5, 1.0, 1.5])
print(v1.dot(v3)) # 32
print(v1.cross(v3)) # Vector([-3, 6, -3])
print(v1.norm()) # 3.7416573867739413
```
定义一个向量类,判断向量是否相等,并求模,加减乘除和向量积与数量积。用python在pycharm钟云行
可以使用以下代码实现向量类:
```python
import math
class Vector:
def __init__(self, x=0, y=0, z=0):
self.x = x
self.y = y
self.z = z
def __eq__(self, other):
return self.x == other.x and self.y == other.y and self.z == other.z
def __add__(self, other):
return Vector(self.x + other.x, self.y + other.y, self.z + other.z)
def __sub__(self, other):
return Vector(self.x - other.x, self.y - other.y, self.z - other.z)
def __mul__(self, other):
if isinstance(other, Vector):
return Vector(self.y * other.z - self.z * other.y,
self.z * other.x - self.x * other.z,
self.x * other.y - self.y * other.x)
else:
return Vector(self.x * other, self.y * other, self.z * other)
def __truediv__(self, other):
return Vector(self.x / other, self.y / other, self.z / other)
def __abs__(self):
return math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
def dot(self, other):
return self.x * other.x + self.y * other.y + self.z * other.z
def angle(self, other):
cos = self.dot(other) / (abs(self) * abs(other))
return math.acos(cos)
```
这个向量类包含了向量的基本操作,包括相等判断、加减乘除、求模、向量积与数量积。
以下是使用向量类的示例:
```python
v1 = Vector(1, 2, 3)
v2 = Vector(4, 5, 6)
print(v1 == v2) # False
v3 = v1 + v2
print(v3.x, v3.y, v3.z) # 5 7 9
v4 = v1 - v2
print(v4.x, v4.y, v4.z) # -3 -3 -3
v5 = v1 * 2
print(v5.x, v5.y, v5.z) # 2 4 6
v6 = v1 / 2
print(v6.x, v6.y, v6.z) # 0.5 1.0 1.5
print(abs(v1)) # 3.7416573867739413
v7 = v1 * v2
print(v7.x, v7.y, v7.z) # -3 6 -3
dot_product = v1.dot(v2)
print(dot_product) # 32
angle = v1.angle(v2)
print(angle) # 0.2257261285527342
```
阅读全文