X64汇编实现FFT代码
时间: 2023-10-26 20:09:43 浏览: 104
以下是一个简单的 X64 汇编实现 FFT 的代码,用于计算长度为 2^n 的复数序列的快速傅里叶变换。
```assembly
section .data
w_real dq 1.0, 0.0, 0.7071067811865475, 0.7071067811865475, 0.0, 1.0, -0.7071067811865475, 0.7071067811865475
w_imag dq 0.0, -1.0, -0.7071067811865475, 0.7071067811865475, -1.0, 0.0, -0.7071067811865475, -0.7071067811865475
section .text
global fft
fft:
mov r12, rdi ; r12 = ptr to input
mov r13, rsi ; r13 = ptr to output
mov r14, rdx ; r14 = n
mov r15, rcx ; r15 = stride
mov rax, 1
mov rbx, r14
shl rax, cl
cmp rax, r14
jne .error
mov rcx, 0
.loop1:
mov rdi, r12
mov rsi, r13
mov rdx, r14
mov r8, r15
mov r9, rcx
call fft_recursion
add rcx, 1
cmp rcx, rax
jl .loop1
ret
.error:
xor rax, rax
ret
fft_recursion:
push rbx
push rbp
push r12
push r13
push r14
push r15
push rsi
mov r14, rdx
cmp r14, 2
jle .base_case
mov rax, 1
shl rax, cl
mov r15, rax
sub rsp, 56
mov rdi, rsp
mov rsi, rsp+16
mov rdx, rsp+32
mov rcx, rsp+48
mov rbx, r14
shr rbx, 1
lea r12, [rdi]
lea r13, [rsi]
lea r10, [rdx]
lea r11, [rcx]
xor r9, r9
.loop2:
mov rax, r9
shl rax, cl
mov r8, rax
mov rax, r9
add rax, rbx
shl rax, cl
mov rax, r12
add rax, r8
mov r8, r13
add r8, r9
mov rax, [rax]
mov [r8], rax
mov rax, r9
add rax, rbx
mov rax, r12
add rax, r8
mov r8, r13
add r8, rax
mov rax, [rax]
mov [r8], rax
inc r9
cmp r9, rbx
jl .loop2
mov rax, 1
mov rbx, rbx
shl rax, cl
shr rbx, 1
mov rax, r15
shr rax, 1
mov rdx, rax
shl rdx, cl
mov r9, 0
.loop3:
mov rax, r9
shl rax, cl
mov r8, rax
mov rax, r9
add rax, rbx
shl rax, cl
mov r10, r12
add r10, r8
mov r11, r10
add r11, rdx
mov rax, [r10]
mov rcx, [r11]
mov r10, r13
add r10, r9
mov [r10], rax
mov r10, r13
add r10, rax
mov rax, rcx
mov [r10], rax
inc r9
cmp r9, rbx
jl .loop3
mov r9, rbx
.loop4:
mov rax, r9
shl rax, cl
mov r8, rax
mov rax, r9
add rax, rbx
shl rax, cl
mov r10, r12
add r10, r8
mov r11, r10
add r11, rdx
mov rax, [r10]
mov rcx, [r11]
mov r10, r13
add r10, r8
mov [r10], rax
mov r10, r13
add r10, rax
mov rax, rcx
mov [r10], rax
mov rax, r9
mov rcx, r14
shr rcx, 1
shl rax, cl
mov r8, r15
shr r8, 1
xor rax, r8
mov r8, rax
mov rax, r12
add rax, r11
mov r9, r13
add r9, r8
mov r10, rdx
add r10, r8
mov r11, rsi
add r11, r8
call fft_recursion
inc r9
cmp r9, rbx
jl .loop4
add rsp, 56
pop rsi
pop r15
pop r14
pop r13
pop r12
pop rbp
pop rbx
ret
.base_case:
mov rdx, r15
sub rdx, 1
mov rax, r12
mov rcx, r13
movsd xmm0, [w_real]
movsd xmm1, [w_imag]
xor r9, r9
.loop5:
mov rax, r9
shl rax, cl
mov r8, rax
mov rax, r12
add rax, r8
movsd xmm2, [rax]
mov rax, r13
add rax, r9
movsd [rax], xmm2
inc r9
cmp r9, rdx
jle .loop5
movsd xmm2, [rsp+8]
movsd xmm3, [rsp+16]
mulsd xmm2, xmm0
mulsd xmm3, xmm1
addsd xmm2, xmm3
movsd [rsp+8], xmm2
movsd xmm3, [rsp+24]
movsd xmm4, [rsp+32]
mulsd xmm3, xmm1
mulsd xmm4, xmm0
subsd xmm3, xmm4
movsd [rsp+24], xmm3
mov rax, r13
movsd xmm2, [rax]
movsd xmm3, [rsp+8]
addsd xmm2, xmm3
movsd [rax], xmm2
mov rax, r13
add rax, rdx
movsd xmm2, [rax]
movsd xmm3, [rsp+24]
addsd xmm2, xmm3
movsd [rax], xmm2
ret
```
该代码使用了递归算法,通过划分子问题并递归求解来完成 FFT。基本情况下,当输入序列长度为 2 时,直接计算 FFT 并返回结果;否则,将输入序列划分为两个长度为 n/2 的子序列,分别计算它们的 FFT,并将它们合并为长度为 n 的序列的 FFT。
该代码依赖于 w_real 和 w_imag 数组,它们包含了旋转因子的实部和虚部。它还需要一个额外的栈空间来保存递归调用的参数和临时变量。
阅读全文