# 评估模型 score = model.evaluate(test_generator, verbose=0) metrics_names = model.metrics_names accuracy_index = metrics_names.index('accuracy') print('Accuracy:', score[accuracy_index])
时间: 2024-04-01 12:37:53 浏览: 165
这段代码的作用是评估模型在测试数据集上的性能表现,并输出模型在测试数据集上的准确率。其中,`model.evaluate(test_generator, verbose=0)`使用测试生成器`test_generator`来对模型进行评估,返回一个包含多个指标得分的列表`score`,`model.metrics_names`返回模型使用的所有指标的名称,`accuracy_index = metrics_names.index('accuracy')`获取准确率指标的索引,最后通过`print('Accuracy:', score[accuracy_index])`输出准确率得分。
相关问题
from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误
在段代码中,有一些错误和需要注意的地方:
1. `img_width` 和 `img_height` 变量没有被定义,需要先定义它们的值。
2. `OUT_CATAGORIES` 变量也没有被定义,需要给它赋值。
3. 在使用 `train_generator` 和 `validation_generator` 时,`steps_per_epoch` 和 `validation_steps` 应该为整数值,而不是浮点数。可以使用 `//` 运算符来进行整除操作。
4. 在评估模型的性能时,`evaluate_generator` 和 `predict_generator` 方法的参数应该是整数值,而不是浮点数。可以使用 `int()` 函数来将浮点数转换为整数。
下面是修改后的代码:
```python
from keras import applications
from keras.preprocessing.image import ImageDataGenerator
from keras import optimizers
from keras.models import Sequential, Model
from keras.layers import Dropout, Flatten, Dense
img_width, img_height = 256, 256
batch_size = 16
epochs = 50
train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train'
validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1'
OUT_CATAGORIES = 1
nb_train_samples = 2000
nb_validation_samples = 100
base_model = applications.VGG16(weights='imagenet',
include_top=False,
input_shape=(img_width, img_height, 3))
base_model.summary()
for layer in base_model.layers[:15]:
layer.trainable = False
top_model = Sequential()
top_model.add(Flatten(input_shape=base_model.output_shape[1:]))
top_model.add(Dense(256, activation='relu'))
top_model.add(Dropout(0.5))
top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid'))
model = Model(inputs=base_model.input,
outputs=top_model(base_model.output))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9),
metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='binary',
shuffle=False)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
verbose=2,
workers=12)
score = model.evaluate_generator(validation_generator, int(nb_validation_samples / batch_size))
scores = model.predict_generator(validation_generator, int(nb_validation_samples / batch_size))
```
以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])
这个错误是由于卷积层(Conv2D)中的过滤器深度与输入张量深度不匹配导致的。在这个例子中,过滤器深度(filter depth)是3,但是输入张量(input depth)的深度是1,无法整除,因此出现错误。为了解决这个问题,我们需要用一个输入深度能够被过滤器深度整除的模型输入数据。
代码改动可以通过如下方式完成:
1. 修改模型输入数据的维度,以匹配过滤器深度的要求。
2. 转换输入数据的颜色通道,以生成一个3个通道的输入张量。
下面是一个修改后的代码示例:
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
import numpy as np
# 修改输入数据的维度
img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
# 载入数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# 将数据转换为浮点数类型
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# 将像素值归一化到[0, 1]
x_train /= 255
x_test /= 255
# 将类向量转换为二进制类矩阵
num_classes = 10
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
# 生成并优化模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
# 在训练数据上生成扩增的数据
batch_size = 100
epochs = 5
datagen = ImageDataGenerator(
featurewise_center=False, # 将输入数据集按均值去中心化
samplewise_center=False, # 将每个样本按均值去中心化
featurewise_std_normalization=False, # 将输入数据除以数据集的标准差
samplewise_std_normalization=False, # 将每个样本除以自身的标准差
zca_whitening=False, # ZCA白化
rotation_range=0, # 随机旋转图像范围
width_shift_range=0.1, # 随机水平移动图像范围
height_shift_range=0.1, # 随机垂直移动图像范围
horizontal_flip=True, # 随机翻转图像
vertical_flip=False # # 随机翻转图像
)
datagen.fit(x_train)
model.fit(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
steps_per_epoch=x_train.shape[0] // batch_size)
# 输出模型的准确率
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
阅读全文