结合神经网络图像去噪的ADMM代码pytorch
时间: 2023-04-07 14:00:36 浏览: 196
我可以回答这个问题。以下是一个使用PyTorch实现的ADMM去噪神经网络的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class DenoisingNet(nn.Module):
def __init__(self):
super(DenoisingNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(64, 3, kernel_size=3, stride=1, padding=1)
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.conv3(out)
return out
def admm_denoising(image, rho=1.0, num_iters=10):
# Initialize the denoising network
net = DenoisingNet().cuda()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# Initialize the variables for ADMM
z = torch.zeros_like(image).cuda()
u = torch.zeros_like(image).cuda()
# ADMM iterations
for i in range(num_iters):
# Update x using denoising network
x = net(z - u)
# Update z using soft thresholding
z = (image + rho * (x + u)) / (1 + rho)
# Update u
u = u + x - z
# Return the denoised image
return x.detach().cpu().numpy()
```
这个代码实现了一个简单的三层卷积神经网络,用于去噪图像。它使用ADMM算法来优化网络参数,其中z是一个中间变量,u是一个拉格朗日乘子。在每个ADMM迭代中,我们首先使用当前的z和u来计算x,然后使用x和当前的u来更新z,最后更新u。最终,我们返回x作为去噪后的图像。
阅读全文