结合神经网络去噪的ADMM代码python
时间: 2023-04-07 11:00:36 浏览: 173
我可以回答这个问题。以下是一个结合神经网络去噪的ADMM代码python的示例:
```python
import numpy as np
import tensorflow as tf
# 定义神经网络模型
def denoising_autoencoder(input_shape):
input_layer = tf.keras.layers.Input(shape=input_shape)
encoded = tf.keras.layers.Dense(128, activation='relu')(input_layer)
encoded = tf.keras.layers.Dense(64, activation='relu')(encoded)
encoded = tf.keras.layers.Dense(32, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(64, activation='relu')(encoded)
decoded = tf.keras.layers.Dense(128, activation='relu')(decoded)
decoded = tf.keras.layers.Dense(input_shape, activation='sigmoid')(decoded)
autoencoder = tf.keras.models.Model(inputs=input_layer, outputs=decoded)
return autoencoder
# 定义ADMM算法
def admm_denoising_autoencoder(X, rho, alpha, max_iter):
# 初始化变量
m, n = X.shape
z = np.zeros((m, n))
u = np.zeros((m, n))
# 定义神经网络模型
autoencoder = denoising_autoencoder((n,))
autoencoder.compile(optimizer='adam', loss='mse')
# 迭代更新
for i in range(max_iter):
# 更新x
x = np.linalg.inv(np.eye(n) + rho * np.eye(n)) @ (z - u)
# 更新z
z = autoencoder.predict(x)
z = np.clip(z, 0, 1)
# 更新u
u = u + alpha * (z - x)
return z
# 测试代码
X = np.random.rand(100, 784)
rho = 1
alpha = 1
max_iter = 10
Z = admm_denoising_autoencoder(X, rho, alpha, max_iter)
```
阅读全文