admm算法python

时间: 2023-11-07 12:52:33 浏览: 39
ADMM算法(Alternating Direction Method of Multipliers,交替方向乘子法)是一种用于求解压缩感知模型最优化问题的算法。其核心思想是将原问题分解成两个子问题,然后通过交替迭代求解这两个子问题的最优解。 在给出的代码中,ADMM算法的主要实现部分包括两个模块:ReconstructionOriginalLayer和forward函数。ReconstructionOriginalLayer模块是一个自定义的神经网络层,用于实现原始重建过程。forward函数是模型的前向传播函数,其中包含了ADMM算法的核心迭代步骤。 具体来说,ReconstructionOriginalLayer模块通过输入x、rho和mask来实现原始重建过程。在forward函数中,首先对mask和rho进行处理,然后计算orig_output1、orig_output2和orig_output3。最后,将x和orig_output3作为字典cs_data的键值对返回。 需要注意的是,给出的代码是针对Pytorch框架编写的,并且参考的是MATLAB实现的论文代码。因此,代码中的一些函数和操作可能需要进行适当的修改和调整,以符合Pytorch框架的要求。
相关问题

admm算法python代码

以下是ADMM算法的Python代码示例: ``` import numpy as np def admm(A, b, rho, alpha, max_iter): """ ADMM算法求解Ax=b,其中A是系数矩阵,b是常数向量,rho是惩罚参数,alpha是松弛因子,max_iter是最大迭代次数。 """ n, d = A.shape # 初始化变量 x = np.zeros(d) z = np.zeros(d) u = np.zeros(d) # 定义辅助函数 def soft_threshold(rho, x): return np.sign(x) * np.maximum(np.abs(x) - rho, 0) # 迭代更新 for i in range(max_iter): # 更新x x = np.linalg.solve(A.T.dot(A) + rho * np.eye(d), A.T.dot(b) + rho * (z - u)) # 更新z z_old = z.copy() z = soft_threshold(alpha * rho, x + u) # 更新u u = u + x - z # 判断收敛 if np.linalg.norm(z - z_old) / np.linalg.norm(z_old) < 1e-3: break return z ``` 该代码实现了ADMM算法的基本思路,包括变量的初始化、辅助函数的定义和迭代更新。其中,soft_threshold函数实现了软阈值运算,用于更新z变量。最后,代码通过判断z变量的相对变化是否小于1e-3来判断算法是否收敛。

python实现admm算法求解稀疏矩阵

ADMM是一种优化算法,广泛应用于稀疏矩阵求解问题。Python作为一种高级编程语言,支持广泛的数学计算库和科学计算算法,使得通过Python实现ADMM算法求解稀疏矩阵成为可能。 实现ADMM算法求解稀疏矩阵的基本步骤是: 1. 定义问题的目标函数和约束条件; 2. 将问题转化为ADMM可解形式,引入拉格朗日乘子; 3. 确定ADMM算法的更新步骤,包括数据更新、拉格朗日乘子更新和ADMM参数更新; 4. 编写Python代码实现ADMM算法的迭代计算过程; 5. 根据迭代计算结果,输出稀疏矩阵求解结果。 需要注意的是,在Python实现ADMM算法求解稀疏矩阵时,要熟练掌握Python的数学计算库,比如NumPy、SciPy等,以及ADMM算法的核心思想。同时,要结合实际问题需求对算法进行优化并进行代码测试和调试,从而得到更加精确和高效的结果。

相关推荐

最新推荐

MegaRAID阵列卡管理软件

适用于Ubuntu-22.04,CentOS7等

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

Oracle数据库实用教程第三章 PL/SQL程序设计.pptx

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

具体操作:你可以将 PyTorch 安装路径添加到环境变量中,或者使用 PyCharm 等集成开发环境来设置 Python 解释器。

好的,以下是具体的操作步骤: 添加 PyTorch 安装路径到环境变量中: 1. 打开计算机的属性,点击高级系统设置; 2. 在弹出的窗口中,点击环境变量; 3. 在系统变量中,找到 PATH 变量,点击编辑; 4. 在编辑系统变量窗口中,点击新建; 5. 输入 PyTorch 安装路径,例如 `C:\Program Files\PyTorch`,点击确定; 6. 点击确定,保存设置。 设置 PyCharm 的 Python 解释器: 1. 打开 PyCharm,点击 File -> Settings 进入设置界面; 2. 在设置界面中,选择 Project -> Project I

TS16949发展史及五大手册的意义.pptx

TS16949发展史及五大手册的意义.pptx

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

粒子群多目标算法matlab代码【算法实现步骤】计算适应度函数

# 1. 粒子群多目标算法简介 ## 1.1 粒子群多目标算法概述 在多目标优化问题中,粒子群多目标算法是一种常用的元启发式优化算法。它借鉴了鸟群觅食的行为,通过不断调整粒子的位置和速度来搜索最优解空间。相比于传统的单目标优化算法,粒子群多目标算法能够有效解决多目标优化问题。 ## 1.2 算法原理与特点 粒子群多目标算法的核心原理是通过模拟群体中粒子的运动,不断更新粒子的位置和速度,以达到最优解。其特点包括易于实现、收敛速度快、对参数不敏感等。 ## 1.3 相关研究现状分析 目前,粒子群多目标算法在多目标优化领域得到了广泛应用,并在不同领域取得了一定的成果。研究者们也在不断探索

ignoring old recipe for target debug/qrc_music.cpp

这个错误通常是由于Makefile文件中的依赖关系出现问题导致的。它表明Makefile尝试编译一个旧的目标,但是该目标已经被更新或删除了,导致编译失败。 解决此问题的方法是删除旧的目标并重新编译。您可以尝试使用"make clean"命令清除旧的目标和对象文件,然后重新运行"make"命令重新编译。如果问题仍然存在,您可能需要检查Makefile文件中的依赖关系是否正确。

生存分析和COX回归PPT课件.pptx

生存分析和COX回归PPT课件.pptx