mmdetection(linux)安装
时间: 2023-11-07 20:15:02 浏览: 205
要在Linux上安装mmdetection,您可以按照以下步骤进行操作:
1. 克隆 mmdetection 仓库:
```
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
```
2. 创建并激活虚拟环境(可选,但强烈推荐):
```
conda create -n your_env_name python=3.7 -y
conda activate your_env_name
```
3. 安装依赖项:
```
pip install -r requirements/build.txt
pip install -v -e .
```
4. 编译CUDA扩展(如果您要使用GPU):
```
cd mmdet/ops
python setup.py develop
cd ../..
```
5. 下载预训练模型权重(可选):
您可以从 `https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md` 下载预训练权重,并将其放在您选择的路径中。
完成上述步骤后,您应该已经成功安装了mmdetection,并可以在Linux上运行它了。请确保您的系统满足所需的依赖项和要求。有关更详细的安装说明,请参阅 mmdetection 的官方文档。
相关问题
mmdetection2安装linux
安装mmdetection2在Linux下的过程如下:
首先,访问https://github.com/open-mmlab/mmdetection 找到对应的版本。本文选择的版本是2.13.0。
进入mmdetection-2.13.0目录,执行以下命令:
```
pip install -r requirements.txt
pip install -v -e .
```
接着,解决可能出现的版本匹配问题。根据经验,确保以下版本安装正确:
```
conda install pytorch=1.7.0 torchvision=0.8.0 mmdetection==2.13.0 mmcv-full==1.3.3
```
请注意,最后一行命令中的"mmcv-full"需要加上"==1.3.3"来确保安装的是指定的版本。
安装的顺序对mmdetection和mmcv没有影响,可以任意选择先安装哪个。
这样就完成了mmdetection2在Linux下的安装。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [配置mmdetection环境.txt](https://download.csdn.net/download/qq_39625973/12675546)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [linux平台的mmdetection安装](https://blog.csdn.net/sinat_32512123/article/details/121476589)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
linux安装mmdetection
要在Linux上安装mmdetection,可以按照以下步骤进行操作:
1. 安装Anaconda或Miniconda,创建一个新的虚拟环境。
2. 在虚拟环境中安装PyTorch和CUDA。
3. 克隆mmdetection的GitHub仓库。
4. 安装mmdetection所需的依赖项,包括Cython、opencv-python、pycocotools等。
5. 编译mmdetection中的一些C++扩展,如nms、roi_align等。
6. 运行测试脚本,确保mmdetection能够正常工作。
具体的安装步骤可以参考mmdetection的官方文档。
阅读全文
相关推荐















