cuda版本与pytorch版本
时间: 2023-08-08 12:06:00 浏览: 149
PyTorch-GPU与CUDA版本对应如下:
PyTorch-GPU 1..:CUDA 9.
PyTorch-GPU 1.1.:CUDA 9.、CUDA 10.
PyTorch-GPU 1.2.:CUDA 9.、CUDA 10.、CUDA 10.1
PyTorch-GPU 1.3.:CUDA 9.2、CUDA 10.、CUDA 10.1
PyTorch-GPU 1.4.:CUDA 10.、CUDA 10.1、CUDA 10.2
PyTorch-GPU 1.5.:CUDA 10.1、CUDA 10.2
PyTorch-GPU 1.6.:CUDA 10.1、CUDA 10.2、CUDA 11.
PyTorch-GPU 1.7.:CUDA 10.1、CUDA 10.2、CUDA 11.
PyTorch-GPU 1.8.:CUDA 11.1
PyTorch-GPU 1.9.:CUDA 11.1、CUDA 11.2
需要注意的是,不同版本的PyTorch-GPU可能需要不同版本的CUDA才能正常运行。因此,在安装PyTorch-GPU时,需要根据自己的CUDA版本选择相应的PyTorch-GPU版本。
相关问题
确认您的CUDA版本与PyTorch版本兼容
在使用PyTorch时,需要确保CUDA版本与PyTorch版本兼容。您可以在PyTorch官方网站上查看支持的CUDA版本和PyTorch版本的对应关系。此外,您还可以使用以下命令来检查您的CUDA版本是否与安装的PyTorch版本兼容:
```python
import torch
print(torch.version.cuda)
```
如果输出与您安装的CUDA版本相同,则表示二者兼容。否则,需要更新CUDA或PyTorch版本以实现兼容。
如何检查 cuda版本 与pytorch 兼容
要检查CUDA版本与PyTorch兼容性,可以使用以下步骤:
1. 查看CUDA版本:在Linux终端中输入`nvcc --version`,或在Windows电脑中进入`NVIDIA Corporation\CUDA Samples\v10.1\bin\win64\Release`目录下,运行`deviceQuery.exe`,即可查看CUDA版本。
2. 查看PyTorch支持的CUDA版本:在PyTorch官方文档中,可以查看当前版本的PyTorch所支持的CUDA版本。例如,PyTorch 1.7.0支持CUDA 10.1、10.2和11.0。
3. 确认CUDA和PyTorch版本兼容性:根据上述两个步骤所得到的信息,确认当前安装的CUDA和PyTorch版本是否兼容。如果不兼容,需要升级或降级其中一个或两个软件,以保证兼容性。
总之,要确保CUDA和PyTorch的兼容性,需要关注两者的版本信息,并根据需要进行升级或降级。
阅读全文