Densenet121网络结构
时间: 2023-09-24 11:12:27 浏览: 253
简单介绍DPN、ResNets、DenseNet
Densenet121是一种深度卷积神经网络结构,它是由DenseNet团队提出的。它在2016年的论文《Densely Connected Convolutional Networks》中被介绍。Densenet121是DenseNet系列中的一个模型,其中121代表了该网络的层数。
Densenet121的主要特点是密集连接(dense connection)。与其他卷积神经网络不同,Densenet中的每个层都与前面所有层直接相连。这种设计使得信息能够更好地在网络中流动,促进了特征的复用和梯度的传播,有助于减轻梯度消失问题。
Densenet121由多个密集块(dense block)组成,每个密集块内部包含多个卷积层。在每个密集块内,输入特征图被连接到后续层的输入上,形成密集连接。这种连接方式使得每个层都可以接收来自前面所有层的特征图作为输入,从而增加了特征的多样性和丰富性。
在Densenet121中,每个密集块内部还包含了一个过渡层(transition layer),用于控制特征图的大小。过渡层通过使用1x1卷积和2x2平均池化来减少特征图的通道数和空间尺寸。这样可以在保持特征丰富性的同时,降低计算复杂度。
最后,Densenet121在最后添加了一个全局平均池化层和一个全连接层,用于分类任务的输出。
总的来说,Densenet121是一种具有密集连接的深度卷积神经网络结构,通过特征的复用和梯度的传播提高了网络性能。它在图像分类等任务上取得了优秀的性能。
阅读全文