f103pwm输入捕获

时间: 2023-07-30 20:03:20 浏览: 39
F103是意法半导体(STMicroelectronics)生产的一款32位微控制器芯片,具有强大的性能和丰富的外设功能。PWM输入捕获是F103芯片的一项重要功能,下面我将详细介绍。 PWM(Pulse Width Modulation)脉宽调制是一种常见的数字信号处理技术,可以通过改变信号的脉宽来控制输出电压的大小。而F103芯片的PWM输入捕获功能,则是用来实时测量和记录PWM信号的周期和占空比。 当F103芯片配置为输入捕获模式时,它可以通过监测外部的PWM信号来测量PWM信号的周期和占空比。在每个PWM周期开始时,输入捕获电路会开始计时,并记录下计时器的值。当PWM周期结束时,输入捕获电路会再次记录下计时器的值。通过这两个记录值的差值,就可以计算出PWM信号的周期。 而占空比则是指PWM信号高电平占整个周期的比例。在每个PWM周期中,输入捕获电路会在PWM信号从高电平切换到低电平时记录下计时器的值,并在下一个PWM周期中记录PWM信号从低电平切换到高电平时的计时器值。通过这两个值的差值,再除以PWM信号周期的计时器值,就可以得到PWM信号的占空比。 F103芯片的PWM输入捕获功能可以广泛应用于各种需要测量和记录PWM信号的应用中。比如电机控制、无线通信、音频处理等。它为设计者提供了一种方便而高效的手段,用来实时测量和控制PWM信号的参数,以实现各种不同的功能和应用需求。
相关问题

STM32F103RB 的 PWM 输入捕获代码

### 回答1: STM32F103RB 是一款基于 ARM Cortex-M3 内核的微控制器,具有 PWM 输入捕获功能。使用这项功能,您可以从 PWM 信号中捕获周期和占空比。以下是一个简单的 STM32F103RB PWM 输入捕获代码示例: ``` #include "stm32f10x.h" void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET) { uint16_t capture = TIM_GetCapture1(TIM2); uint16_t period = TIM_GetPeriod(TIM2); float duty_cycle = (float)capture / (float)period; // 在这里处理周期和占空比数据 TIM_ClearITPendingBit(TIM2, TIM_IT_CC1); } } int main(void) { // 初始化代码 TIM_ITConfig(TIM2, TIM_IT_CC1, ENABLE); NVIC_EnableIRQ(TIM2_IRQn); while (1) { // 主程序代码 } } ``` 该代码使用定时器 2 捕获 PWM 信号。TIM2_IRQHandler 函数在捕获事件发生时被调用,用于计算周期和占空比。主程序则在 while 循环中运行其他代码。 请注意,这仅是一个示例代码,可能需要根据您的具体应用场景进行调整。 ### 回答2: STM32F103RB是STMicroelectronics推出的一款32位ARM Cortex-M3内核的单片机,具有丰富的外设和强大的性能。PWM(Pulse Width Modulation)输入捕获是一种常见的信号处理技术,可以通过测量脉冲宽度来获取外部信号的频率或周期。 要在STM32F103RB上实现PWM输入捕获功能,首先需要配置相关的引脚和定时器。以下是一个简单的PWM输入捕获代码示例: #include "stm32f10x.h" void TIM_Configuration(void) { TIM_ICInitTypeDef TIM_ICInitStructure; GPIO_InitTypeDef GPIO_InitStructure; /* 使能定时器时钟 */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); /* 使能GPIO时钟 */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); /* 配置GPIO引脚为复用功能 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); /* 配置定时器2为输入捕获模式 */ TIM_ICInitStructure.TIM_Channel = TIM_Channel_2; TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStructure.TIM_ICFilter = 0x0; TIM_ICInit(TIM2, &TIM_ICInitStructure); /* 启动定时器2 */ TIM_Cmd(TIM2, ENABLE); } int main(void) { TIM_Configuration(); while (1) { /* 获取捕获的脉冲宽度 */ uint16_t pulseWidth = TIM_GetCapture2(TIM2); /* 进行其他处理操作 */ ... } } 以上代码片段是一个简单的PWM输入捕获实现,主要包括配置定时器和输入捕获的相关寄存器。其中,TIM2是定时器的名称,GPIOA是用于输入捕获的GPIO端口,GPIO_Pin_1是用于输入捕获的引脚。 在主循环中,通过TIM_GetCapture2函数获取捕获到的脉冲宽度,可以进行后续的处理操作。需要注意的是,以上代码仅是一个简化的示例,实际应用中还需根据具体需求进行适当的调整和优化。 希望以上回答对您有所帮助! ### 回答3: STM32F103RB是ST公司的一款高性能微控制器,具有PWM输入捕获功能。下面给出其PWM输入捕获的代码示例。 首先,需要在STM32CubeMX软件中配置引脚功能和定时器功能。选择一个GPIO引脚作为输入引脚,并将其配置为捕获输入模式。然后,在定时器中选择PWM输入模式,并配置相关参数,如定时器时钟分频系数、计数器模式、计数器自动重装载值等。 接下来,进入代码编写环节,在main.c文件中的main函数中添加如下代码: ```c #include "stm32f1xx_hal.h" TIM_HandleTypeDef htim2; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM2_Init(void); void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim); // 外部中断回调函数,当捕获到输入时触发 void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim){ if(htim->Instance == TIM2){ // 获取捕获值 uint32_t captureValue = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1); // 进行其他处理 } } int main(void){ HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_TIM2_Init(); // 启动定时器 HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); while (1){ // 主循环中继续其他工作 } } void SystemClock_Config(void){ // 系统时钟配置 } static void MX_GPIO_Init(void){ // GPIO初始化 GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_AF_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } static void MX_TIM2_Init(void){ // 定时器初始化 htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 0; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; HAL_TIM_Base_Init(&htim2); TIM_SlaveConfigTypeDef sSlaveConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_IC_InitTypeDef sConfigIC = {0}; sSlaveConfig.SlaveMode = TIM_SLAVEMODE_RESET; sSlaveConfig.InputTrigger = TIM_TS_TI1FP1; HAL_TIM_SlaveConfigSynchronization(&htim2, &sSlaveConfig); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig); sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_BOTHEDGE; sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI; sConfigIC.ICPrescaler = TIM_ICPSC_DIV1; sConfigIC.ICFilter = 0; HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1); HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1); HAL_NVIC_SetPriority(TIM2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); } void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim){ GPIO_InitTypeDef GPIO_InitStruct = {0}; if(htim->Instance == TIM2){ __HAL_RCC_GPIOA_CLK_ENABLE(); /**TIM2 GPIO Configuration PA0 ------> TIM2_CH1 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } } ``` 以上代码通过配置GPIO引脚和定时器,实现了在TIM2通道1的PWM输入模式下进行输入捕获。当检测到输入信号时,可以在HAL_TIM_IC_CaptureCallback函数中获取输入的捕获值,并进行后续处理。 需要注意的是,以上只是一个简单的示例代码,具体的配置和操作根据具体应用需求进行调整。

STM32F103 PWM输入捕捉周期和占空比

对于STM32F103系列的微控制器,PWM输入捕获模式可以用于测量外部信号的周期和占空比。以下是相关的参数和计算方法: 1. 周期测量: - 配置捕获模式为边沿对齐模式。 - 选择一个输入通道作为捕获源。 - 使用输入捕获寄存器(例如TIMx_CCR1)来存储捕获到的值。 - 当捕获到边沿时,读取TIMx_CCR1的值,该值表示一个周期的时间。 - 通过将捕获到的值与定时器的时钟频率进行计算,可以得到周期的时间。 2. 占空比测量: - 配置捕获模式为边沿对齐模式。 - 选择一个输入通道作为捕获源。 - 使用两个输入捕获寄存器(例如TIMx_CCR1和TIMx_CCR2)来存储两个捕获边沿之间的时间差。 - 当捕获到两个边沿时,读取TIMx_CCR1和TIMx_CCR2的值。 - 通过将两个捕获值的差除以定时器的时钟频率,可以得到占空比。 需要注意的是,具体的配置和计算方法可能会因使用的定时器和输入通道而有所不同。请参考相关的STM32F103参考手册和相关的代码示例进行具体的实现。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用前端写一个树形控件读取指定目录的文件夹结构

抱歉,作为AI语言模型,我无法提供完整的前端代码。但是,我可以给您一些指导和建议: 1. 使用递归函数来读取指定目录下的所有子文件夹和文件。 2. 在HTML中使用ul和li标签来构建树形结构。 3. 使用CSS样式来美化树形控件。 4. 使用JavaScript来实现树形控件的交互功能(如展开/收起节点)。 5. 使用Ajax或fetch等技术来异步加载子节点,以提高性能。 6. 如果需要支持拖拽等交互功能,可以考虑使用第三方插件或库(如jQuery UI)。 希望这些建议对您有所帮助!
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

如何基于构建的时空知识图谱来构建图神经网络模型

基于构建的时空知识图谱来构建图神经网络模型的步骤如下: 1. 将时空知识图谱转化为图数据结构。时空知识图谱中的实体和关系可以看作图中的节点和边,将它们转化为图的数据结构。 2. 对图数据进行预处理。对图数据进行预处理,包括节点特征的提取、边的权重计算、图的划分等。 3. 构建图神经网络模型。选择合适的图神经网络模型,如图卷积网络(GCN)、图注意力网络(GAT)等,根据预处理后的图数据进行模型的构建。 4. 模型训练和优化。使用训练集对模型进行训练,并进行模型优化,如调整超参数、使用正则化等。 5. 模型评估和预测。使用测试集对模型进行评估,并进行模型预测,如预测节点的属性、预测边的
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩