matlab的rmse
时间: 2023-10-31 11:18:17 浏览: 80
Matlab程序用于求RMSE.m
在Matlab中,RMSE代表均方根误差(Root Mean Square Error)。它用于衡量预测值与真实值之间的差程度。计算RMSE的方法是先计算预测值与真实值之差的平方,然后取平均值并开平方根。以下是一个计算RMSE的示例代码:
```matlab
% 预测值
predicted = [1.2, 2.1, 3.5, 4.8, 5.6];
% 真实值
groundTruth = [1.0, 2.2, 3.7, 4.5, 5.9];
% 计算预测值与真实值之差的平方
squaredError = (predicted - groundTruth).^2;
% 计算均方根误差
rmse = sqrt(mean(squaredError));
% 显示结果
disp(['RMSE: ', num2str(rmse)]);
```
在这段代码中,首先定义了预测值和真实值的数组。然后计算预测值与真实值之差的平方,并对所有差的平方求平均值。最后,通过对平均平方差取平方根得到RMSE值。这个代码可以在Matlab环境中执行,并显示出计算得到的RMSE值。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [matlab数据统计时的STD、RMSE计算方法](https://blog.csdn.net/SmartTiger_CSL/article/details/107018111)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [RMSE计算及Matlab代码实现](https://blog.csdn.net/wellcoder/article/details/131621377)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文