import numpy as np import pandas as pd data = pd.read_csv("data/预处理.csv", header=None); data = np.array(data) cluster = [] # 按第二个到第十四个标签分类 for i in range(178): if len(cluster) == 0: cluster.append([0]) else: m = 0 for j in range(len(cluster)): n = 0 for x in range(1, 14): if data[i][x] == data[j][x]: n = n + 1 if n == 2: cluster[j].append(i) m = 1 if m == 0: cluster.append([i]) for i in range(len(cluster)): for j in range(len(cluster)): if cluster[i] == cluster[j] and i != j: cluster[j] = 0 for i in range(len(cluster)): print( cluster[i]) xiu1 = [] for t in range(178): if data[t][0] ==1: xiu1.append(t) xiu2 = [] for t in range(178): if data[t][0] == 2: xiu2.append(t) xiu3 = [] for t in range(178): if data[t][0] == 3: xiu3.append(t) print(xiu1) print(xiu2) print(xiu3)修改并完善代码,只用简单的for循环不用decision,使他能分别输出xiu1,xiu2,xiu3在所有13个条件属性的下近似,

时间: 2024-04-13 21:29:28 浏览: 7
你可以使用以下代码来修改并完善你的代码,以输出xiu1、xiu2和xiu3在所有13个条件属性下的近似值: ```python import numpy as np import pandas as pd data = pd.read_csv("data/预处理.csv", header=None) data = np.array(data) cluster = [] # 按第二个到第十四个标签分类 for i in range(178): if len(cluster) == 0: cluster.append([0]) else: m = 0 for j in range(len(cluster)): n = 0 for x in range(1, 14): if data[i][x] == data[j][x]: n = n + 1 if n == 2: cluster[j].append(i) m = 1 if m == 0: cluster.append([i]) xiu1 = [] for t in range(178): if data[t][0] == 1: xiu1.append(t) xiu2 = [] for t in range(178): if data[t][0] == 2: xiu2.append(t) xiu3 = [] for t in range(178): if data[t][0] == 3: xiu3.append(t) # 计算xiu1在所有13个条件属性下的近似值 approximations_xiu1 = [] for col in range(1, 14): # 遍历所有13个条件属性列 approx = sum(data[t][col] for t in xiu1) / len(xiu1) # 计算平均值作为近似值 approximations_xiu1.append(approx) # 计算xiu2在所有13个条件属性下的近似值 approximations_xiu2 = [] for col in range(1, 14): # 遍历所有13个条件属性列 approx = sum(data[t][col] for t in xiu2) / len(xiu2) # 计算平均值作为近似值 approximations_xiu2.append(approx) # 计算xiu3在所有13个条件属性下的近似值 approximations_xiu3 = [] for col in range(1, 14): # 遍历所有13个条件属性列 approx = sum(data[t][col] for t in xiu3) / len(xiu3) # 计算平均值作为近似值 approximations_xiu3.append(approx) print("xiu1 近似值:", approximations_xiu1) print("xiu2 近似值:", approximations_xiu2) print("xiu3 近似值:", approximations_xiu3) ``` 这样,你就可以得到xiu1、xiu2和xiu3在所有13个条件属性下的近似值。希望这能帮到你!

相关推荐

#导入所需库 import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense from sklearn.model_selection import KFold #读入数据 train_data = pd.read_csv('ProSeqs_Train.txt', delimiter=' ', header=None) test_data = pd.read_csv('ProSeqs_Test.txt', delimiter=' ', header=None) #预处理训练集数据 X = train_data.iloc[:, 2:].values y = train_data.iloc[:, 1].values le = LabelEncoder() y = le.fit_transform(y) y = to_categorical(y) #定义模型 model = Sequential() model.add(Dense(64, input_dim=X.shape[1], activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(2, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #K折交叉验证训练模型 kf = KFold(n_splits=5, shuffle=True, random_state=42) fold_scores = [] for train_index, valid_index in kf.split(X): train_X, train_y = X[train_index], y[train_index] valid_X, valid_y = X[valid_index], y[valid_index] model.fit(train_X, train_y, validation_data=(valid_X, valid_y), epochs=50, batch_size=32, verbose=2) fold_scores.append(model.evaluate(valid_X, valid_y, verbose=0)[1]) print('KFold cross-validation accuracy: {:.2f}%'.format(np.mean(fold_scores) * 100)) #预处理测试集数据 test_X = test_data.iloc[:, 1:].values #预测测试集结果 preds = model.predict(test_X) preds = np.argmax(preds, axis=1) #保存预测结果至文件中 np.savetxt('preds.txt', preds, fmt='%d') #输出预测结果 print('Predictions:') print(preds)该蛋白质功能预测实验涉及分类模型的理论基础

from keras.models import Sequential from keras.layers import Dense, Activation # 定义模型结构 model = Sequential() model.add(Dense(units=16, input_shape=(4,))) model.add(Activation('relu')) model.add(Dense(16)) model.add(Activation('relu')) model.add(Dense(3)) model.add(Activation('softmax')) #定义损失函数和优化器,并编译 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=["accuracy"]) import pandas as pd from sklearn.model_selection import train_test_split from keras.utils import np_utils filename = 'data\iris.data' data = pd.read_csv(filename, header = None) data.columns = ['sepal length','sepal width','petal length','petal width','class'] data.iloc[0:5,:] #数据预处理 #convert classname to integer data.loc[ data['class'] == 'Iris-setosa', 'class' ] = 0 data.loc[ data['class'] == 'Iris-versicolor', 'class' ] = 1 data.loc[ data['class'] == 'Iris-virginica', 'class' ] = 2 #data X = data.iloc[:,0:4].values.astype(float) y = data.iloc[:,4].values.astype(int) train_x, test_x, train_y, test_y = train_test_split(X, y, train_size=0.8, test_size=0.2, random_state=0) #keras多分类问题需要将类型转化为独热矩阵 #与pd.get_dummies()函数作用一致 train_y_ohe = np_utils.to_categorical(train_y, 3) test_y_ohe = np_utils.to_categorical(test_y, 3) #print(test_y_ohe ) #训练模型 model.fit(train_x, train_y_ohe, epochs=50, batch_size=1, verbose=2, validation_data=(test_x,test_y_ohe)) # 评估模型 loss, accuracy = model.evaluate(test_x, test_y_ohe, verbose=2) print('loss = {},accuracy = {} '.format(loss,accuracy) ) # 查看预测结果 classes = model.predict(test_x, batch_size=1, verbose=2) print('测试样本数:',len(classes)) print("分类概率:\n",classes)

import tensorflow as tf import pandas as pd import numpy as np # 读取训练数据,名为"public.train.csv"的CSV文件,并将其转换为一个二维数组datatrain。 df = pd.read_csv(r"public.train.csv", header=None) datatrain = np.array(df) # 从datatrain中提取输入数据和输出数据,其中输入数据是datatrain中的前20列数据,输出数据是datatrain的第21列数据。 # 提取特征值,形成输入数据 dataxs = datatrain[1:, :20] dataxshlen = len(dataxs) # 训练输入数据的行数 dataxsllen = len(dataxs[0]) # 训练输入数据的列数 #接下来,将输入数据中的每个元素从字符串类型转换为浮点型。 for i in range(dataxshlen): for j in range(dataxsllen): dataxs[i][j] = float(dataxs[i][j]) # 提取特征值,形成输出数据 datays = datatrain[1:, [20]] datayshlen = dataxshlen # 训练输出数据的行数 dataysllen = len(datays[0]) # 训练输出数据的列数 #接下来,将输出数据中的每个元素从字符串类型转换为浮点型。 for i in range(datayshlen): for j in range(dataysllen): datays[i][j] = float(datays[i][j]) # 最后打印输出训练数据输入数据、训练数据输出数据以及它们的行数和列数。 print("______训练数据输入数据_______") print(dataxs) print("______训练数据输出数据_______") print(datays) print("______训练数据输入数据行数、列数;训练数据输出数据行数、列数_______") print(dataxshlen, dataxsllen, datayshlen, dataysllen)根据这段代码续写DNN和LSTM预测模型

最新推荐

recommend-type

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx

埃森哲制药企业数字化转型项目顶层规划方案glq.pptx
recommend-type

华为OD机试D卷 - 机场航班调度程序 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):